We consider a magnetohydrodynamic-α model with kinematic viscosity and magnetic diffusivity for an incompressible fluid in a three-dimensional periodic box (torus). Similar models are useful to study the turbulent behavior of fluids in presence of a magnetic field because of the current impossibility to handle non-regularized systems neither analytically nor via numerical simulations. We prove the existence of a global solution and a global attractor. Moreover, we provide an upper bound for the Hausdorff and the fractal dimension of the attractor. This bound can be interpreted in terms of degrees of freedom of the system. In some sense, this result provides an intermediate bound between the number of degrees of freedom for the simplified Bardina model and the Navier–Stokes-α equation.

Global Existence and Finite Dimensional Global Attractor for a 3D Double Viscous MHD-alpha Model

CATANIA, Davide;SECCHI, Paolo
2010-01-01

Abstract

We consider a magnetohydrodynamic-α model with kinematic viscosity and magnetic diffusivity for an incompressible fluid in a three-dimensional periodic box (torus). Similar models are useful to study the turbulent behavior of fluids in presence of a magnetic field because of the current impossibility to handle non-regularized systems neither analytically nor via numerical simulations. We prove the existence of a global solution and a global attractor. Moreover, we provide an upper bound for the Hausdorff and the fractal dimension of the attractor. This bound can be interpreted in terms of degrees of freedom of the system. In some sense, this result provides an intermediate bound between the number of degrees of freedom for the simplified Bardina model and the Navier–Stokes-α equation.
File in questo prodotto:
File Dimensione Formato  
CMS-8-4-A12.pdf

gestori archivio

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 213.69 kB
Formato Adobe PDF
213.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/41646
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 23
social impact