OBJECTIVE - Cannabinoid type 1 (CB1) receptor is involved in whole-body and cellular energy metabolism. We asked whether CB1 receptor stimulation was able to decrease mitochondrial biogenesis in different metabolically active tissues of obese high-fat diet (HFD)-fed mice. RESEARCH DESIGN AND METHODS - The effects of selective CB1 agonist arachidonyl-2-chloroethanolamide (ACEA) and endocannabinoids anandamide and 2-arachidonoylglycerol on endothelial nitric oxide synthase (eNOS) expression were examined, as were mitochondrial DNA amount and mitochondrial biogenesis parameters in cultured mouse and human white adipocytes. These parameters were also investigated in white adipose tissue (WAT), muscle, and liver of mice chronically treated with ACEA. Moreover, p38 mitogen-activated protein kinase (MAPK) phosphorylation was investigated in WAT and isolated mature adipocytes from eNOS-/- and wild-type mice. eNOS, p38 MAPK, adenosine monophosphate-activated protein kinase (AMPK), and mitochondrial biogenesis were investigated in WAT, muscle, and liver of HFD mice chronically treated with ACEA. RESULTS - ACEA decreased mitochondrial biogenesis and eNOS expression, activated p38 MAPK, and reduced AMPK phosphorylation in white adipocytes. The ACEA effects on mitochondria were antagonized by nitric oxide donors and by p38 MAPK silencing. White adipocytes from eNOS-/- mice displayed higher p38 MAPK phosphorylation than wild-type animals under basal conditions, and ACEA was ineffective in cells lacking eNOS. Moreover, mitochondrial biogenesis was downregulated, while p38 MAPK phosphorylation was increased and AMPK phosphorylation was decreased in WAT, muscle, and liver of ACEA-treated mice on a HFD. CONCLUSIONS - CB1 receptor stimulation decreases mitochondrial biogenesis in white adipocytes, through eNOS downregulation and p38 MAPK activation, and impairs mitochondrial function in metabolically active tissues of dietary obese mice

Cannabinoid receptor stimulation impairs mitochondrial biogenesis in mouse white adipose tissue, muscle, and liver: the role of eNOS, p38 MAPK, and AMPK pathways

VALERIO, Alessandra;DOSSENA, Marta;
2010-01-01

Abstract

OBJECTIVE - Cannabinoid type 1 (CB1) receptor is involved in whole-body and cellular energy metabolism. We asked whether CB1 receptor stimulation was able to decrease mitochondrial biogenesis in different metabolically active tissues of obese high-fat diet (HFD)-fed mice. RESEARCH DESIGN AND METHODS - The effects of selective CB1 agonist arachidonyl-2-chloroethanolamide (ACEA) and endocannabinoids anandamide and 2-arachidonoylglycerol on endothelial nitric oxide synthase (eNOS) expression were examined, as were mitochondrial DNA amount and mitochondrial biogenesis parameters in cultured mouse and human white adipocytes. These parameters were also investigated in white adipose tissue (WAT), muscle, and liver of mice chronically treated with ACEA. Moreover, p38 mitogen-activated protein kinase (MAPK) phosphorylation was investigated in WAT and isolated mature adipocytes from eNOS-/- and wild-type mice. eNOS, p38 MAPK, adenosine monophosphate-activated protein kinase (AMPK), and mitochondrial biogenesis were investigated in WAT, muscle, and liver of HFD mice chronically treated with ACEA. RESULTS - ACEA decreased mitochondrial biogenesis and eNOS expression, activated p38 MAPK, and reduced AMPK phosphorylation in white adipocytes. The ACEA effects on mitochondria were antagonized by nitric oxide donors and by p38 MAPK silencing. White adipocytes from eNOS-/- mice displayed higher p38 MAPK phosphorylation than wild-type animals under basal conditions, and ACEA was ineffective in cells lacking eNOS. Moreover, mitochondrial biogenesis was downregulated, while p38 MAPK phosphorylation was increased and AMPK phosphorylation was decreased in WAT, muscle, and liver of ACEA-treated mice on a HFD. CONCLUSIONS - CB1 receptor stimulation decreases mitochondrial biogenesis in white adipocytes, through eNOS downregulation and p38 MAPK activation, and impairs mitochondrial function in metabolically active tissues of dietary obese mice
File in questo prodotto:
File Dimensione Formato  
2010_Diabetes_Tedesco_Valerio_complete.pdf

gestori archivio

Descrizione: Articolo principale e informazioni supplementari
Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 496.16 kB
Formato Adobe PDF
496.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/41216
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 48
  • Scopus 131
  • ???jsp.display-item.citation.isi??? 115
social impact