Molluscum contagiosum virus (MCV) infection induces self-limiting cutaneous lesions in an immunocompetent host that can undergo spontaneous regression preceded by local inflammation. On histology, a large majority of MCV-induced lesions are characterized by islands of hyperplastic epithelium containing infected keratinocytes and surrounded by scarce inflammatory infiltrate. However, spontaneous regression has been associated with the occurrence of a dense inflammatory reaction. By histology and immunohistochemistry, we identified MCV-induced lesions showing a dense inflammatory infiltrate associated with cell death in keratinocytes (inflammatory Molluscum contagiosum (I-MC)). In I-MC, hyperplastic keratinocytes were highly immunogenic as demonstrated by the expression of major histocompatibility complex class I and II molecules. Immune cell infiltration consisted of numerous cytotoxic T cells admixed with natural killer cells and plasmacytoid dendritic cells (PDCs). Accordingly, a type I IFN signature associated with PDC infiltration was demonstrated in both keratinocytes and inflammatory cells. Among the latter, a cell population resembling IFN-DC (CD123(+)CD11c(+)CD16(+)CD14(+)MxA(+)) was identified in proximity to islands of apoptotic keratinocytes. In vitro-generated IFN-DCs expressed a strong cytotoxic signature, as demonstrated by high levels of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL). This study establishes a previously unreported model to underpin the role of innate immune cells in viral immune surveillance.Journal of Investigative Dermatology advance online publication, 26 August 2010; doi:10.1038/jid.2010.256.

Spontaneous Regression of Highly Immunogenic Molluscum contagiosum Virus (MCV)-Induced Skin Lesions Is Associated with Plasmacytoid Dendritic Cells and IFN-DC Infiltration.

VERMI, William;SALOGNI, Laura;SOZZANI, Silvano;LONARDI, Silvia;FACCHETTI, Fabio
2011-01-01

Abstract

Molluscum contagiosum virus (MCV) infection induces self-limiting cutaneous lesions in an immunocompetent host that can undergo spontaneous regression preceded by local inflammation. On histology, a large majority of MCV-induced lesions are characterized by islands of hyperplastic epithelium containing infected keratinocytes and surrounded by scarce inflammatory infiltrate. However, spontaneous regression has been associated with the occurrence of a dense inflammatory reaction. By histology and immunohistochemistry, we identified MCV-induced lesions showing a dense inflammatory infiltrate associated with cell death in keratinocytes (inflammatory Molluscum contagiosum (I-MC)). In I-MC, hyperplastic keratinocytes were highly immunogenic as demonstrated by the expression of major histocompatibility complex class I and II molecules. Immune cell infiltration consisted of numerous cytotoxic T cells admixed with natural killer cells and plasmacytoid dendritic cells (PDCs). Accordingly, a type I IFN signature associated with PDC infiltration was demonstrated in both keratinocytes and inflammatory cells. Among the latter, a cell population resembling IFN-DC (CD123(+)CD11c(+)CD16(+)CD14(+)MxA(+)) was identified in proximity to islands of apoptotic keratinocytes. In vitro-generated IFN-DCs expressed a strong cytotoxic signature, as demonstrated by high levels of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL). This study establishes a previously unreported model to underpin the role of innate immune cells in viral immune surveillance.Journal of Investigative Dermatology advance online publication, 26 August 2010; doi:10.1038/jid.2010.256.
File in questo prodotto:
File Dimensione Formato  
12.pdf

solo utenti autorizzati

Licenza: Dominio pubblico
Dimensione 9.87 MB
Formato Adobe PDF
9.87 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/41074
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 79
  • ???jsp.display-item.citation.isi??? 73
social impact