In this paper we discuss the well-posedness and the asymptotic behavior of a doubly nonlinear problem describing the vibrations of a Kelvin-Voight string-beam system which models a suspension bridge. For this model we obtain the existence and uniqueness of solutions and the exponential stability of the homogeneous system, provided that the constant axial force is smaller than a critical value. For a general axial force, the existence of the regular global attractor is proved when the external loads are independent of time.

Well-posedness and longtime behaviour of a coupled nonlinear system modeling a suspension bridge

GIORGI, Claudio;VUK, Elena
2015-01-01

Abstract

In this paper we discuss the well-posedness and the asymptotic behavior of a doubly nonlinear problem describing the vibrations of a Kelvin-Voight string-beam system which models a suspension bridge. For this model we obtain the existence and uniqueness of solutions and the exponential stability of the homogeneous system, provided that the constant axial force is smaller than a critical value. For a general axial force, the existence of the regular global attractor is proved when the external loads are independent of time.
File in questo prodotto:
File Dimensione Formato  
IBGV_Meccanica_GADES.pdf

gestori archivio

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 318.42 kB
Formato Adobe PDF
318.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/384906
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact