Within the recent revival of interest in quantum heat engines between two thermal reservoirs whereby the working substance is a two-level system, it has been suggested that the celebrated Carnot heat-to-work conversion efficiency 1−(Tlow/Thigh) cannot be reached. Contrary to this suggestion, we show that reaching the Carnot bound not only is not impossible and does not require an infinite number of heat baths and infinitesimal processes, but it is also within reach of the current experimental techniques. It is sufficient to cycle smoothly (slowly) over at least three (in general four) values of the tunable energy level gap Δ of the system, by varying Δ not only along the isoentropics, but also along the isotherms. This is possible by means of the recently suggested maser-laser tandem technique. We base our proof on the general thermodynamic equilibrium properties of a two-level system together with a careful distinction between the Gibbs relation dE = T dS+(E/Δ)dΔ and the energy balance equation dE =dQ← −dW→. We derive bounds to the net-work to high-temperature-heat ratio (energy efficiency) for a Carnot cycle and for the “inscribed” Otto-like cycle. By representing these cycles on useful thermodynamic diagrams, we infer and confirm important aspects of the second law of thermodynamics.

Quantum thermodynamic Carnot and Otto-like cycles for a two-level system

BERETTA, Gian Paolo
2012-01-01

Abstract

Within the recent revival of interest in quantum heat engines between two thermal reservoirs whereby the working substance is a two-level system, it has been suggested that the celebrated Carnot heat-to-work conversion efficiency 1−(Tlow/Thigh) cannot be reached. Contrary to this suggestion, we show that reaching the Carnot bound not only is not impossible and does not require an infinite number of heat baths and infinitesimal processes, but it is also within reach of the current experimental techniques. It is sufficient to cycle smoothly (slowly) over at least three (in general four) values of the tunable energy level gap Δ of the system, by varying Δ not only along the isoentropics, but also along the isotherms. This is possible by means of the recently suggested maser-laser tandem technique. We base our proof on the general thermodynamic equilibrium properties of a two-level system together with a careful distinction between the Gibbs relation dE = T dS+(E/Δ)dΔ and the energy balance equation dE =dQ← −dW→. We derive bounds to the net-work to high-temperature-heat ratio (energy efficiency) for a Carnot cycle and for the “inscribed” Otto-like cycle. By representing these cycles on useful thermodynamic diagrams, we infer and confirm important aspects of the second law of thermodynamics.
File in questo prodotto:
File Dimensione Formato  
Beretta-EPL-99-20005-2012.pdf

gestori archivio

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 611.41 kB
Formato Adobe PDF
611.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/33174
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 29
social impact