Transcranial direct current stimulation (tDCS) is able to generate a long-term increase or decrease in the neuronal excitability that can modulate cognitive tasks, similar to repetitive transcranial magnetic stimulation. The aim of this study was to explore the effects of tDCS on a language task in young healthy subjects. Anodal, cathodal and sham tDCS were applied to the left dorsolateral prefrontal cortex (DLPFC) before two picture naming experiments, a preliminary study (i.e., experiment 1) and a main study (i.e., experiment 2). The results show that anodal tDCS of the left DLPFC improves naming performance, speeding up verbal reaction times after the end of the stimulation, whereas cathodal stimulation had no effect. We hypothesize that the cerebral network dedicated to lexical retrieval processing is facilitated by anodal tDCS to the left DLPFC. Although the mechanisms responsible for facilitation are not yet clear, the results presented herein implicate a facilitation lasting beyond the end of the stimulation that imply cortical plasticity mechanisms. The opportunity to non-invasively interact with the functioning of these plasticity mechanisms will surely open new and promising scenarios in language studies in basic and clinical neuroscience fields.
Naming facilitation induced by transcranial direct current stimulation.
MINIUSSI, Carlo
2010-01-01
Abstract
Transcranial direct current stimulation (tDCS) is able to generate a long-term increase or decrease in the neuronal excitability that can modulate cognitive tasks, similar to repetitive transcranial magnetic stimulation. The aim of this study was to explore the effects of tDCS on a language task in young healthy subjects. Anodal, cathodal and sham tDCS were applied to the left dorsolateral prefrontal cortex (DLPFC) before two picture naming experiments, a preliminary study (i.e., experiment 1) and a main study (i.e., experiment 2). The results show that anodal tDCS of the left DLPFC improves naming performance, speeding up verbal reaction times after the end of the stimulation, whereas cathodal stimulation had no effect. We hypothesize that the cerebral network dedicated to lexical retrieval processing is facilitated by anodal tDCS to the left DLPFC. Although the mechanisms responsible for facilitation are not yet clear, the results presented herein implicate a facilitation lasting beyond the end of the stimulation that imply cortical plasticity mechanisms. The opportunity to non-invasively interact with the functioning of these plasticity mechanisms will surely open new and promising scenarios in language studies in basic and clinical neuroscience fields.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.