It has been proposed that endothelial dysfunction is due to the excessive degradation of nitric oxide (NO) by oxidative stress. The enzyme heme-oxygenase (HO) seems to exert a protective effect on oxidative stress in the vasculature, both in animal models and in humans. The objective of this study is to evaluate the effects of inhibition or activation of HO on endothelial function in mesenteric small resistance arteries of spontaneously hypertensive rats (SHR). Six SHR were treated with cobalt protoporphyrin IX 50 mg/Kg (CoPP), an activator of HO; six SHR with stannous mesoporphyrin 30 mg/Kg (SnMP), an inhibitor of HO, and six SHR with saline. As controls, six Wistar-Kyoto rats (WKY) were treated with CoPP, six WKY with SnMP, and six WKY with saline. Drugs were injected in the peritoneum once a week for 2 weeks. Systolic blood pressure (SBP) was measured (tail cuff method) before and after treatment. Mesenteric small resistance arteries were mounted on a micromyograph. Endothelial function was evaluated as a cumulative concentration-response curve to acetylcholine (ACH), before and after pre-incubation with N(G)-methyl-L-arginine (L-NMMA, inhibitor of NO synthase), and to bradykinin (BK). In SHR treatment with CoPP, improved ACH-and BK-induced vasodilatation (ANOVA p < 0.001) and this improvement was abolished by L-NMMA (ANOVA p < 0.001). SnMP was devoid of effects on endothelial function. In WKY, both activation and inhibition of HO did not substantially affect endothelium-mediated vasodilatation. The stimulation of HO seems to induce an improvement of endothelial dysfunction in SHR by possibly reducing oxidative stress and increasing NO availability.

Role of heme oxygenase in modulating endothelial function in mesenteric small resistance arteries of spontaneously hypertensive rats.

PORTERI, Enzo;RODELLA, Luigi Fabrizio;REZZANI, Rita;RIZZONI, Damiano;PAIARDI, Silvia;DE CIUCEIS, Carolina;BOARI, Gianluca;FOGLIO, Eleonora;Favero G;RIZZARDI, Nicola;PLATTO, Caterina;AGABITI ROSEI, Enrico
2009-01-01

Abstract

It has been proposed that endothelial dysfunction is due to the excessive degradation of nitric oxide (NO) by oxidative stress. The enzyme heme-oxygenase (HO) seems to exert a protective effect on oxidative stress in the vasculature, both in animal models and in humans. The objective of this study is to evaluate the effects of inhibition or activation of HO on endothelial function in mesenteric small resistance arteries of spontaneously hypertensive rats (SHR). Six SHR were treated with cobalt protoporphyrin IX 50 mg/Kg (CoPP), an activator of HO; six SHR with stannous mesoporphyrin 30 mg/Kg (SnMP), an inhibitor of HO, and six SHR with saline. As controls, six Wistar-Kyoto rats (WKY) were treated with CoPP, six WKY with SnMP, and six WKY with saline. Drugs were injected in the peritoneum once a week for 2 weeks. Systolic blood pressure (SBP) was measured (tail cuff method) before and after treatment. Mesenteric small resistance arteries were mounted on a micromyograph. Endothelial function was evaluated as a cumulative concentration-response curve to acetylcholine (ACH), before and after pre-incubation with N(G)-methyl-L-arginine (L-NMMA, inhibitor of NO synthase), and to bradykinin (BK). In SHR treatment with CoPP, improved ACH-and BK-induced vasodilatation (ANOVA p < 0.001) and this improvement was abolished by L-NMMA (ANOVA p < 0.001). SnMP was devoid of effects on endothelial function. In WKY, both activation and inhibition of HO did not substantially affect endothelium-mediated vasodilatation. The stimulation of HO seems to induce an improvement of endothelial dysfunction in SHR by possibly reducing oxidative stress and increasing NO availability.
File in questo prodotto:
File Dimensione Formato  
Role of Heme Oxygenase in Modulating.pdf

accesso aperto

Licenza: PUBBLICO - Pubblico senza Copyright
Dimensione 562.21 kB
Formato Adobe PDF
562.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/30269
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact