This brief review considers some of the cardiac diseases and conditions where free radicals and related reactants are believed to be causative. The report also describes the beneficial actions of melatonin against oxidative cardiovascular disorders. Based on the data available, melatonin seems to have cardioprotective properties via its direct free radical scavenger and its indirect antioxidant activity. Melatonin efficiently interacts with various reactive oxygen and reactive nitrogen species (receptor independent actions) and it also upregulates antioxidant enzymes and downregulates pro-oxidant enzymes (receptor-dependent actions). Moreover, melatonin enters all cells and subcellular compartments and crosses morphophysiologic barriers. These findings have implications for the protective effects of melatonin against cardiac diseases induced by oxidative stress. Melatonin attenuates molecular and cellular damages resulting from cardiac ischemia/reperfusion in which destructive free radicals are involved. Anti-inflammatory and antioxidative properties of melatonin are also involved in the protection against a chronic vascular disease, atherosclerosis. The administration of melatonin, as a result of its antioxidant features, has been reported to reduce hypertension and cardiotoxicity induced by clinically used drugs. The results described herein help to clarify the beneficial effects of melatonin against these conditions and define the potential clinical applicability of melatonin in cardiovascular diseases.

Cardiovascular diseases: protective effects of melatonin

TENGATTINI, Sandra;RODELLA, Luigi Fabrizio;REZZANI, Rita
2008-01-01

Abstract

This brief review considers some of the cardiac diseases and conditions where free radicals and related reactants are believed to be causative. The report also describes the beneficial actions of melatonin against oxidative cardiovascular disorders. Based on the data available, melatonin seems to have cardioprotective properties via its direct free radical scavenger and its indirect antioxidant activity. Melatonin efficiently interacts with various reactive oxygen and reactive nitrogen species (receptor independent actions) and it also upregulates antioxidant enzymes and downregulates pro-oxidant enzymes (receptor-dependent actions). Moreover, melatonin enters all cells and subcellular compartments and crosses morphophysiologic barriers. These findings have implications for the protective effects of melatonin against cardiac diseases induced by oxidative stress. Melatonin attenuates molecular and cellular damages resulting from cardiac ischemia/reperfusion in which destructive free radicals are involved. Anti-inflammatory and antioxidative properties of melatonin are also involved in the protection against a chronic vascular disease, atherosclerosis. The administration of melatonin, as a result of its antioxidant features, has been reported to reduce hypertension and cardiotoxicity induced by clinically used drugs. The results described herein help to clarify the beneficial effects of melatonin against these conditions and define the potential clinical applicability of melatonin in cardiovascular diseases.
File in questo prodotto:
File Dimensione Formato  
08-08R Tengattini S - v44 p16 J Pineal Res 2008.pdf

gestori archivio

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 137.57 kB
Formato Adobe PDF
137.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/29489
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 305
  • ???jsp.display-item.citation.isi??? 288
social impact