Apolipoprotein A1 mimetic peptide (D-4F), synthesized from D-amino acid, enhances the ability of high-density lipoprotein to protect low-density lipoprotein (LDL) against oxidation in atherosclerotic disease. Using a rat model of type I diabetes, we investigated whether chronic use of D-4F would lead to up-regulation of heme oxygenase (HO)-1, endothelial cell marker (CD31(+)), and thrombomodulin (TM) expression and increase the number of endothelial progenitor cells (EPCs). Sprague-Dawley rats were rendered diabetic with streptozotocin (STZ) and either D-4F or vehicle was administered, by i.p. injection, daily for 6 weeks (100 microg/100 g b.wt.). HO activity was measured in liver, kidney, heart, and aorta. After 6 weeks of D-4F treatment, HO activity significantly increased in the heart and aorta by 29 and 31% (p < 0.05 and p < 0.49), respectively. Long-term D-4F treatment also caused a significant increase in TM and CD31(+) expression. D-4F administration increased antioxidant capacity, as reflected by the decrease in oxidized protein and oxidized LDL, and enhanced EPC function and/or repair, as evidenced by the increase in EPC endothelial nitric-oxide synthase (eNOS) and prevention of vascular TM and CD31(+) loss. In conclusion, HO-1 and eNOS are relevant targets for D-4F and may contribute to the D-4F-mediated increase in TM and CD31(+), the antioxidant and anti-inflammatory properties, and confers robust vascular protection in this animal model of type 1 diabetes.

Long-term treatment with the apolipoprotein A1 mimetic peptide increases antioxidants and vascular repair in type I diabetic rats

RODELLA, Luigi Fabrizio;STACCHIOTTI, Alessandra;REZZANI, Rita;
2007-01-01

Abstract

Apolipoprotein A1 mimetic peptide (D-4F), synthesized from D-amino acid, enhances the ability of high-density lipoprotein to protect low-density lipoprotein (LDL) against oxidation in atherosclerotic disease. Using a rat model of type I diabetes, we investigated whether chronic use of D-4F would lead to up-regulation of heme oxygenase (HO)-1, endothelial cell marker (CD31(+)), and thrombomodulin (TM) expression and increase the number of endothelial progenitor cells (EPCs). Sprague-Dawley rats were rendered diabetic with streptozotocin (STZ) and either D-4F or vehicle was administered, by i.p. injection, daily for 6 weeks (100 microg/100 g b.wt.). HO activity was measured in liver, kidney, heart, and aorta. After 6 weeks of D-4F treatment, HO activity significantly increased in the heart and aorta by 29 and 31% (p < 0.05 and p < 0.49), respectively. Long-term D-4F treatment also caused a significant increase in TM and CD31(+) expression. D-4F administration increased antioxidant capacity, as reflected by the decrease in oxidized protein and oxidized LDL, and enhanced EPC function and/or repair, as evidenced by the increase in EPC endothelial nitric-oxide synthase (eNOS) and prevention of vascular TM and CD31(+) loss. In conclusion, HO-1 and eNOS are relevant targets for D-4F and may contribute to the D-4F-mediated increase in TM and CD31(+), the antioxidant and anti-inflammatory properties, and confers robust vascular protection in this animal model of type 1 diabetes.
File in questo prodotto:
File Dimensione Formato  
100.07.pdf

gestori archivio

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 363.89 kB
Formato Adobe PDF
363.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/29387
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 42
  • Scopus 79
  • ???jsp.display-item.citation.isi??? 78
social impact