Tumor neovascularization (angiogenesis) is regarded as a promising target for anticancer drugs. Heparin binds to fibroblast growth factor-2 (FGF2) and promotes the formation of ternary complexes with endothelial cell surface receptors, inducing an angiogenic response. As a novel strategy to generate antiangiogenic substances exploiting binding to FGF2 while preventing FGF receptor (FGFR) activation, sulfation gaps were generated along the heparin chains by controlled alkali-catalyzed removal of sulfate groups of iduronic acid 2-O-sulfate residues, giving rise to the corresponding epoxide derivatives. A new class of heparin derivatives was then obtained by opening the epoxide rings followed by oxidative glycol-splitting of the newly formed (and the preexisting) nonsulfated uronic acid residues. In vitro these heparin derivatives prevent the formation of FGFR/FGF2/heparan sulfate proteoglycan ternary complexes and inhibit FGF2-stimulated endothelial cell proliferation. They exert an antiangiogenic activity in the chick embryo chorioallantoic membrane assay, where the parent heparin is inactive. Low and very low molecular weight derivatives of a prototype compound, as well as its glycine and taurine derivatives obtained by reductive amination of glycol-split residues, retained the angiostatic activity. A significant relationship was found between the extent of glycol-splitting and the FGF2-antagonist/angiostatic activities of these heparin derivatives. Molecular dynamics calculations support the assumption that glycol-split residues act as flexible joints that, while favoring 1:1 binding to FGF2, disrupt the linearity of heparin chains necessary for formation of active complexes with FGFRs.

Undersulfated and glycol-split heparins endowed with antiangiogenic activity

BELLERI, Mirella;RUSNATI, Marco;PRESTA, Marco
2004-01-01

Abstract

Tumor neovascularization (angiogenesis) is regarded as a promising target for anticancer drugs. Heparin binds to fibroblast growth factor-2 (FGF2) and promotes the formation of ternary complexes with endothelial cell surface receptors, inducing an angiogenic response. As a novel strategy to generate antiangiogenic substances exploiting binding to FGF2 while preventing FGF receptor (FGFR) activation, sulfation gaps were generated along the heparin chains by controlled alkali-catalyzed removal of sulfate groups of iduronic acid 2-O-sulfate residues, giving rise to the corresponding epoxide derivatives. A new class of heparin derivatives was then obtained by opening the epoxide rings followed by oxidative glycol-splitting of the newly formed (and the preexisting) nonsulfated uronic acid residues. In vitro these heparin derivatives prevent the formation of FGFR/FGF2/heparan sulfate proteoglycan ternary complexes and inhibit FGF2-stimulated endothelial cell proliferation. They exert an antiangiogenic activity in the chick embryo chorioallantoic membrane assay, where the parent heparin is inactive. Low and very low molecular weight derivatives of a prototype compound, as well as its glycine and taurine derivatives obtained by reductive amination of glycol-split residues, retained the angiostatic activity. A significant relationship was found between the extent of glycol-splitting and the FGF2-antagonist/angiostatic activities of these heparin derivatives. Molecular dynamics calculations support the assumption that glycol-split residues act as flexible joints that, while favoring 1:1 binding to FGF2, disrupt the linearity of heparin chains necessary for formation of active complexes with FGFRs.
File in questo prodotto:
File Dimensione Formato  
2004 J Med Chem FGF2 glycol split hep.pdf

gestori archivio

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 338.32 kB
Formato Adobe PDF
338.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/29122
Citazioni
  • ???jsp.display-item.citation.pmc??? 29
  • Scopus 82
  • ???jsp.display-item.citation.isi??? 71
social impact