This note deals with a nonlinear system of PDEs accounting for phase transition phenomena. The existence of solutions of a related Cauchy- Neumann problem is established in the one-dimensional setting. A fixed point procedure guarantees the existence of solutions locally in time. Next, an ar- gument based on a priori estimates allows to extend such solutions in the whole time interval. Hence, the uniqueness of the solution is proved by proper contracting estimates.

Global solution to a phase transition model with microscopic movements and accelerations in one space dimension

BONFANTI, Giovanna;LUTEROTTI, Fabio
2006-01-01

Abstract

This note deals with a nonlinear system of PDEs accounting for phase transition phenomena. The existence of solutions of a related Cauchy- Neumann problem is established in the one-dimensional setting. A fixed point procedure guarantees the existence of solutions locally in time. Next, an ar- gument based on a priori estimates allows to extend such solutions in the whole time interval. Hence, the uniqueness of the solution is proved by proper contracting estimates.
File in questo prodotto:
File Dimensione Formato  
commPAA06.pdf

gestori archivio

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 168.26 kB
Formato Adobe PDF
168.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/29041
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact