In this paper we investigate mathematical models describing deformations and thermal variations of a thin homogeneous thermoviscoelastic plate. A hereditary non-Fourier constitutive law for the heat flux and some heat power constitutive equation with linear memory are considered. The resulting models are derived in the framework of the well-established theory, due to Gurtin and Pipkin, and according to the standard approximation procedure for the Reissner–Mindlin plate model.

Mathematical models of Reissner-Mindlin thermoviscoelastic plates

GIORGI, Claudio;NASO, MARIA GRAZIA
2006-01-01

Abstract

In this paper we investigate mathematical models describing deformations and thermal variations of a thin homogeneous thermoviscoelastic plate. A hereditary non-Fourier constitutive law for the heat flux and some heat power constitutive equation with linear memory are considered. The resulting models are derived in the framework of the well-established theory, due to Gurtin and Pipkin, and according to the standard approximation procedure for the Reissner–Mindlin plate model.
File in questo prodotto:
File Dimensione Formato  
mt_jou_thermal_stress_rev.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 190.93 kB
Formato Adobe PDF
190.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/29031
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact