Multistage stochastic programs, which involve sequences of decisions over time, are usually hard to solve in realistically sized problems. Providing bounds for optimal solution may help in evaluating whether it is worth the additional computations for the stochastic program vs. simplified approaches. In this paper we generalize measures from the two-stage case, based on different levels of available information, to the multistage stochastic programming problems. A set of theorems providing chains of inequalities among the new quantities are proved. Numerical results on a case study related to a simple transportation problem illustrate the described relationships.
Bounds in Multistage Linear Stochastic Programming
ALLEVI, Elisabetta;
2014-01-01
Abstract
Multistage stochastic programs, which involve sequences of decisions over time, are usually hard to solve in realistically sized problems. Providing bounds for optimal solution may help in evaluating whether it is worth the additional computations for the stochastic program vs. simplified approaches. In this paper we generalize measures from the two-stage case, based on different levels of available information, to the multistage stochastic programming problems. A set of theorems providing chains of inequalities among the new quantities are proved. Numerical results on a case study related to a simple transportation problem illustrate the described relationships.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.