Aluminium (Al) is the third most widespread metal in the environment. It is toxic for the brain, bone and haematological system but unfortunately very little data exist for other organs. Stress proteins are induced or enhanced against metal toxicity with an essential role in the recovery of organules and other cellular proteins. This immunohistochemical study was performed to analyze the distribution of three stress proteins (HSP25, HSP72, GRP75) in rat kidney and liver orally exposed to Al sulphate daily for 3 and 6 months. Al-induced alterations were further studied by histopathology (H&E, PAS, Perl’s, Masson) and ultrastructural morphometry. In the kidney: HSP25 was enhanced in proximal tubules after 6 months Al-exposure when abnormal brush borders were observed; HSP72 was induced in proximal tubules only after long Al-treatment; GRP75 was raised in midcortical area sometimes within nuclei. Furthermore, lysosomal and lipofuscins densities increased in the juxtamedullary tubules after 3 months Al exposure with respect to controls. In the liver: Perl’spositive deposits and fibrosis became evident after Al treatment. HSP25 was very weak; HSP72 focal in pericentral hepatocytes at 3 months and induced also in Kupffer cells at 6 months; GRP75 diffuse in periportal hepatocytes and non parenchymal cells at 6 months. Prolonged Al exposure stimulated stress proteins strictly organ-dependently in the rat. Their distribution in kidney and liver seems related to cumulative sublethal effects induced by metal and could be a sensitive index of Al susceptibility of these organs.

Stress proteins expression in rat kidney and liver chronically exposed to aluminium sulphate

STACCHIOTTI, Alessandra;RODELLA, Luigi Fabrizio;REZZANI, Rita;
2006-01-01

Abstract

Aluminium (Al) is the third most widespread metal in the environment. It is toxic for the brain, bone and haematological system but unfortunately very little data exist for other organs. Stress proteins are induced or enhanced against metal toxicity with an essential role in the recovery of organules and other cellular proteins. This immunohistochemical study was performed to analyze the distribution of three stress proteins (HSP25, HSP72, GRP75) in rat kidney and liver orally exposed to Al sulphate daily for 3 and 6 months. Al-induced alterations were further studied by histopathology (H&E, PAS, Perl’s, Masson) and ultrastructural morphometry. In the kidney: HSP25 was enhanced in proximal tubules after 6 months Al-exposure when abnormal brush borders were observed; HSP72 was induced in proximal tubules only after long Al-treatment; GRP75 was raised in midcortical area sometimes within nuclei. Furthermore, lysosomal and lipofuscins densities increased in the juxtamedullary tubules after 3 months Al exposure with respect to controls. In the liver: Perl’spositive deposits and fibrosis became evident after Al treatment. HSP25 was very weak; HSP72 focal in pericentral hepatocytes at 3 months and induced also in Kupffer cells at 6 months; GRP75 diffuse in periportal hepatocytes and non parenchymal cells at 6 months. Prolonged Al exposure stimulated stress proteins strictly organ-dependently in the rat. Their distribution in kidney and liver seems related to cumulative sublethal effects induced by metal and could be a sensitive index of Al susceptibility of these organs.
File in questo prodotto:
File Dimensione Formato  
Stacchiotti A - v21 p131 Histol Histopathol 2006.pdf

gestori archivio

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.71 MB
Formato Adobe PDF
3.71 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/28810
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 30
social impact