In this paper, a new electronic system for gas detection is presented. Particular attention is focused on electronic noses that employ several resistive sensors. New resistive sensors may have high value due to new substances (TiO2) or to low-cost fabrication process and, supposing to use these sensors together with traditional ones (SnO2), a novel instrument to manage high-value resistive sensors varying over a wide range, from kilohms to gigohms is required. The proposed hardware approach is a modular architecture which takes advantage from an improved resistance-to-period converter, where sensors are DC powered. Experimental results show a relative standard deviation below 0.01% and a relative displacement to the reference line less than 1% over six decades if commercial resistors are considered. A prototype has been realized to manage up to eight sensors, detect and estimate substance concentrations, and communicate results to the Internet.

A New Low-Cost Electronic System to Manage Resistive Sensors for Gas Detection

DEPARI, Alessandro;FALASCONI, Matteo;FLAMMINI, Alessandra;MARIOLI, Daniele;SBERVEGLIERI, Giorgio;TARONI, Andrea
2007-01-01

Abstract

In this paper, a new electronic system for gas detection is presented. Particular attention is focused on electronic noses that employ several resistive sensors. New resistive sensors may have high value due to new substances (TiO2) or to low-cost fabrication process and, supposing to use these sensors together with traditional ones (SnO2), a novel instrument to manage high-value resistive sensors varying over a wide range, from kilohms to gigohms is required. The proposed hardware approach is a modular architecture which takes advantage from an improved resistance-to-period converter, where sensors are DC powered. Experimental results show a relative standard deviation below 0.01% and a relative displacement to the reference line less than 1% over six decades if commercial resistors are considered. A prototype has been realized to manage up to eight sensors, detect and estimate substance concentrations, and communicate results to the Internet.
File in questo prodotto:
File Dimensione Formato  
160_2007_07_I.pdf

gestori archivio

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/28745
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
social impact