This work is focused on the equation $$ \ptt u+\partial_{xxxx}u +\int_0^\infty \mu(s) \partial_{xxxx}[u(t)-u(t-s)]ds- \big(\beta+\|\partial_x u\|_{L^2(0,1)}^2\big)\partial_{xx}u= f$$ describing the motion of an extensible viscoelastic beam. Under suitable boundary conditions, the related dynamical system in the history space framework is shown to possess a global attractor of optimal regularity. The result is obtained by exploiting an appropriate decomposition of the solution semigroup, together with the existence of a Lyapunov functional.
On the extensible viscoelastic beam
GIORGI, Claudio;PATA, Vittorino;VUK, Elena
2008-01-01
Abstract
This work is focused on the equation $$ \ptt u+\partial_{xxxx}u +\int_0^\infty \mu(s) \partial_{xxxx}[u(t)-u(t-s)]ds- \big(\beta+\|\partial_x u\|_{L^2(0,1)}^2\big)\partial_{xx}u= f$$ describing the motion of an extensible viscoelastic beam. Under suitable boundary conditions, the related dynamical system in the history space framework is shown to possess a global attractor of optimal regularity. The result is obtained by exploiting an appropriate decomposition of the solution semigroup, together with the existence of a Lyapunov functional.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
abstract Giorgi-Pata-Vuk.pdf
accesso aperto
Tipologia:
Abstract
Licenza:
DRM non definito
Dimensione
76.28 kB
Formato
Adobe PDF
|
76.28 kB | Adobe PDF | Visualizza/Apri |
non2008_GPV.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
229.85 kB
Formato
Adobe PDF
|
229.85 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.