This work is focused on the equation $$ \ptt u+\partial_{xxxx}u +\int_0^\infty \mu(s) \partial_{xxxx}[u(t)-u(t-s)]ds- \big(\beta+\|\partial_x u\|_{L^2(0,1)}^2\big)\partial_{xx}u= f$$ describing the motion of an extensible viscoelastic beam. Under suitable boundary conditions, the related dynamical system in the history space framework is shown to possess a global attractor of optimal regularity. The result is obtained by exploiting an appropriate decomposition of the solution semigroup, together with the existence of a Lyapunov functional.

On the extensible viscoelastic beam

GIORGI, Claudio;PATA, Vittorino;VUK, Elena
2008-01-01

Abstract

This work is focused on the equation $$ \ptt u+\partial_{xxxx}u +\int_0^\infty \mu(s) \partial_{xxxx}[u(t)-u(t-s)]ds- \big(\beta+\|\partial_x u\|_{L^2(0,1)}^2\big)\partial_{xx}u= f$$ describing the motion of an extensible viscoelastic beam. Under suitable boundary conditions, the related dynamical system in the history space framework is shown to possess a global attractor of optimal regularity. The result is obtained by exploiting an appropriate decomposition of the solution semigroup, together with the existence of a Lyapunov functional.
File in questo prodotto:
File Dimensione Formato  
abstract Giorgi-Pata-Vuk.pdf

accesso aperto

Tipologia: Abstract
Licenza: DRM non definito
Dimensione 76.28 kB
Formato Adobe PDF
76.28 kB Adobe PDF Visualizza/Apri
non2008_GPV.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 229.85 kB
Formato Adobe PDF
229.85 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/28535
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 37
social impact