Abstract Hepatocellular carcinoma (HCC) is one of most malignant and aggressive human tumors. Transforming growth factor-beta1 (TGF-beta1) and its coreceptor CD105 have been shown to contribute to HCC malignant progression. TGF-beta1 and CD105 have also been implicated in angiogenesis, but their role in the vascularization of HCC has not been investigated. To fill this gap, we studied the effect of TGF-beta1 and CD105 on HCC-derived endothelium. By using immunomagnetic beads, we isolated and cultured endothelial cells (ECs) from HCC (HCC-EC) and adjacent nonneoplastic tissue (nNL-ECs) obtained from 24 liver biopsies. HCC and nNL biopsies were also analyzed by immunohistochemistry for the expression of CD105, TGF-beta1, Ve-cadherin (Ve-cad), CD44, beta-catenin, and E-cadherin. Compared with nNL-ECs, HCC-ECs had higher expression of CD105, enhanced spontaneous motility, and greater capacity to migrate in response to TGF-beta1 (5 ng/mL), particularly in the presence of a fibronectin matrix. The chemotactic effect of TGF-beta1 was blocked by anti-CD105 antibodies and correlated with the grade of HCC malignancy. Histologic examination of HCC biopsies showed that HCCs with the worse malignant features had the highest expression of TGF-beta1, CD105, and angiogenic markers (Ve-cad and CD44). Because CD105 was highly expressed in microvessels at the tumor periphery and TGF-beta1 staining was only found in neoplastic hepatocytes, we conclude that HCC-derived TGF-beta1 may act as a chemoattractant for CD105-expressing ECs and as a promoter of tumor angiogenesis. Thus, drugs that selectively target the TGF-beta1/CD105 axis may interfere with HCC-related angiogenesis and HCC progression.
Transforming growth factor-beta1 and CD105 promote the migration of hepatocellular carcinoma-derived endothelium.
BENETTI, Anna;BERENZI, Angiola;GARRAFA, Emirena Michela;DESSY, Enrico;PORTOLANI, Nazario;PIARDI, Tullio;GIULINI, Stefano Maria;CARUSO, Arnaldo;
2008-01-01
Abstract
Abstract Hepatocellular carcinoma (HCC) is one of most malignant and aggressive human tumors. Transforming growth factor-beta1 (TGF-beta1) and its coreceptor CD105 have been shown to contribute to HCC malignant progression. TGF-beta1 and CD105 have also been implicated in angiogenesis, but their role in the vascularization of HCC has not been investigated. To fill this gap, we studied the effect of TGF-beta1 and CD105 on HCC-derived endothelium. By using immunomagnetic beads, we isolated and cultured endothelial cells (ECs) from HCC (HCC-EC) and adjacent nonneoplastic tissue (nNL-ECs) obtained from 24 liver biopsies. HCC and nNL biopsies were also analyzed by immunohistochemistry for the expression of CD105, TGF-beta1, Ve-cadherin (Ve-cad), CD44, beta-catenin, and E-cadherin. Compared with nNL-ECs, HCC-ECs had higher expression of CD105, enhanced spontaneous motility, and greater capacity to migrate in response to TGF-beta1 (5 ng/mL), particularly in the presence of a fibronectin matrix. The chemotactic effect of TGF-beta1 was blocked by anti-CD105 antibodies and correlated with the grade of HCC malignancy. Histologic examination of HCC biopsies showed that HCCs with the worse malignant features had the highest expression of TGF-beta1, CD105, and angiogenic markers (Ve-cad and CD44). Because CD105 was highly expressed in microvessels at the tumor periphery and TGF-beta1 staining was only found in neoplastic hepatocytes, we conclude that HCC-derived TGF-beta1 may act as a chemoattractant for CD105-expressing ECs and as a promoter of tumor angiogenesis. Thus, drugs that selectively target the TGF-beta1/CD105 axis may interfere with HCC-related angiogenesis and HCC progression.File | Dimensione | Formato | |
---|---|---|---|
Benetti A. Cancer Res, 2008.pdf
gestori archivio
Tipologia:
Full Text
Licenza:
DRM non definito
Dimensione
565.01 kB
Formato
Adobe PDF
|
565.01 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.