Aquaporins (AQPs) are small membrane channel proteins involved in osmoregulation. To date, only AQP1, AQP2, AQP4 and AQP9 have been found in the nervous system. Generally, they are involved in water movement in nervous tissue, nevertheless, recent data would suggest the involvement of AQPs in neurotransmission. In this work, we have evaluated the expression of AQP1 and AQP2 in the trigeminal ganglia of mice in an animal model of perioral acute inflammatory pain using immunohistochemistry and immunoblotting analysis. Our data have shown for the first time, the alteration of AQP2 expression in trigeminal ganglia in acute inflammatory pain showing increased and intracellular redistribution of AQP2 mainly in small-sized neurons and Schwann cells. Apart from this, the AQP1 expression remained unaltered. On the whole, these data support the hypothesis that AQP2 is involved in pain transmission in the peripheral nervous system.

Alterations of AQP2 expression in trigeminal ganglia in a murine inflammation model

BORSANI, Elisa;BERNARDI S;REZZANI, Rita;RODELLA, Luigi Fabrizio
2009-01-01

Abstract

Aquaporins (AQPs) are small membrane channel proteins involved in osmoregulation. To date, only AQP1, AQP2, AQP4 and AQP9 have been found in the nervous system. Generally, they are involved in water movement in nervous tissue, nevertheless, recent data would suggest the involvement of AQPs in neurotransmission. In this work, we have evaluated the expression of AQP1 and AQP2 in the trigeminal ganglia of mice in an animal model of perioral acute inflammatory pain using immunohistochemistry and immunoblotting analysis. Our data have shown for the first time, the alteration of AQP2 expression in trigeminal ganglia in acute inflammatory pain showing increased and intracellular redistribution of AQP2 mainly in small-sized neurons and Schwann cells. Apart from this, the AQP1 expression remained unaltered. On the whole, these data support the hypothesis that AQP2 is involved in pain transmission in the peripheral nervous system.
File in questo prodotto:
File Dimensione Formato  
Borsani E - v449 p183 Neurosci Letters 2009.pdf

gestori archivio

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 691.37 kB
Formato Adobe PDF
691.37 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/28475
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact