In the engineering practice routing reservoir sizing is commonly performed by using the design storm method, although its effectiveness has been debated for a long time. Conversely, continuous simulations and direct statistical analyses of recorded hydrographs are considered more reliable and comprehensive, but are indeed complex or seldom practicable. In this paper a handier tool is provided by the analytical-probabilistic approach to construct probability functions of peak discharges issuing from natural watersheds or routed through on-line and off-line reservoirs. A simplified routing scheme and a rainfall-runoff model based on a few essential hydrological parameters were implemented. To validate the proposed design methodology, on-line and off-line routing reservoirs were firstly sized by means of a conventional design storm method for a test watershed located in northern Italy. Their routing efficiencies were then estimated by both analytical-probabilistic models and benchmarking continuous simulations. Bearing in mind practical design purposes, adopted models evidenced a satisfactory consistency.

Deriving a practical analytical-probabilistic method to size flood routing reservoirs

BALISTROCCHI, Matteo;GROSSI, Giovanna;BACCHI, Baldassare
2013-01-01

Abstract

In the engineering practice routing reservoir sizing is commonly performed by using the design storm method, although its effectiveness has been debated for a long time. Conversely, continuous simulations and direct statistical analyses of recorded hydrographs are considered more reliable and comprehensive, but are indeed complex or seldom practicable. In this paper a handier tool is provided by the analytical-probabilistic approach to construct probability functions of peak discharges issuing from natural watersheds or routed through on-line and off-line reservoirs. A simplified routing scheme and a rainfall-runoff model based on a few essential hydrological parameters were implemented. To validate the proposed design methodology, on-line and off-line routing reservoirs were firstly sized by means of a conventional design storm method for a test watershed located in northern Italy. Their routing efficiencies were then estimated by both analytical-probabilistic models and benchmarking continuous simulations. Bearing in mind practical design purposes, adopted models evidenced a satisfactory consistency.
File in questo prodotto:
File Dimensione Formato  
Balistrocchietal2013@AWR.pdf

accesso aperto

Tipologia: Full Text
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/281704
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact