This review summarizes the recent research development on mammalian sialidase molecular cloning. Sialic acid–containing compounds are involved in several physiological processes, and sialidases, as glycohydrolytic enzymes that remove sialic acid residues, play a pivotal role as well. Sialidases hydrolyze the nonreducing, terminal sialic acid linkage in various natural substrates, such as glycoproteins, glycolipids, gangliosides, and polysaccharides. Mammalian sialidases are present in several tissues/organs and cells with a typical subcellular distribution: they are the lysosomal, the cytosolic, and the plasma membrane–associated sialidases. Starting in 1993, 12 different mammalian sialidases have been cloned and sequenced. A comparison of their amino acid sequences revealed the presence of highly conserved regions. These conserved regions are shared with viral and microbial sialidases that have been characterized at threedimensional structural level, allowing us to perform the molecular modeling of the mammalian proteins and suggesting a monophyletic origin of the sialidase enzymes. Overall, the availability of the cDNA species encoding mammalian sialidases is an important step leading toward a comprehensive picture of the relationships between the structure and biological function of these enzymes.
Recent development in mammalian sialidase molecular biology
MONTI, Eugenio;PRETI, Augusto;BORSANI, Giuseppe
2002-01-01
Abstract
This review summarizes the recent research development on mammalian sialidase molecular cloning. Sialic acid–containing compounds are involved in several physiological processes, and sialidases, as glycohydrolytic enzymes that remove sialic acid residues, play a pivotal role as well. Sialidases hydrolyze the nonreducing, terminal sialic acid linkage in various natural substrates, such as glycoproteins, glycolipids, gangliosides, and polysaccharides. Mammalian sialidases are present in several tissues/organs and cells with a typical subcellular distribution: they are the lysosomal, the cytosolic, and the plasma membrane–associated sialidases. Starting in 1993, 12 different mammalian sialidases have been cloned and sequenced. A comparison of their amino acid sequences revealed the presence of highly conserved regions. These conserved regions are shared with viral and microbial sialidases that have been characterized at threedimensional structural level, allowing us to perform the molecular modeling of the mammalian proteins and suggesting a monophyletic origin of the sialidase enzymes. Overall, the availability of the cDNA species encoding mammalian sialidases is an important step leading toward a comprehensive picture of the relationships between the structure and biological function of these enzymes.File | Dimensione | Formato | |
---|---|---|---|
Review NR02.pdf
gestori archivio
Tipologia:
Full Text
Licenza:
DRM non definito
Dimensione
9.09 MB
Formato
Adobe PDF
|
9.09 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.