In this paper we study a one-dimensional evolution problem arising in the theory of linear thermoviscoelasticity with hereditary heat conduction. Depending on the instantaneous conductivity Ko, both Coleman-Gurtin (Ko > O) and Gurtin-Pipkin (Ko = O) heat flow theories are involved. In any case, the exponential stability of the corresponding semigroup is proved for a class of memory functions including weakly singular kernels. In order to achieve the exponential decay of the energy, we assume that mechanical and thermal memory kernels decay exponentially for large time.

Exponential stability of a linear viscoelastic bar with thermal memory

GIORGI, Claudio;NASO, MARIA GRAZIA
2000-01-01

Abstract

In this paper we study a one-dimensional evolution problem arising in the theory of linear thermoviscoelasticity with hereditary heat conduction. Depending on the instantaneous conductivity Ko, both Coleman-Gurtin (Ko > O) and Gurtin-Pipkin (Ko = O) heat flow theories are involved. In any case, the exponential stability of the corresponding semigroup is proved for a class of memory functions including weakly singular kernels. In order to achieve the exponential decay of the energy, we assume that mechanical and thermal memory kernels decay exponentially for large time.
File in questo prodotto:
File Dimensione Formato  
annali.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 123.11 kB
Formato Adobe PDF
123.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/27673
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact