In this paper we investigate mathematical models of a thin homogeneous thermoviscoelastic plate subject to thermal deformations. A non--Fourier constitutive law for the heat flux and some heat power constitutive equation with linear memory are considered here. The resulting models are derived in the framework of the well--established theory of heat flow with memory due to Gurtin and Pipkin and according to the standard approximation procedure for the Kirchhoff plate.

Mathematical models of thin thermo-viscoelastic plates

GIORGI, Claudio;NASO, MARIA GRAZIA
2000-01-01

Abstract

In this paper we investigate mathematical models of a thin homogeneous thermoviscoelastic plate subject to thermal deformations. A non--Fourier constitutive law for the heat flux and some heat power constitutive equation with linear memory are considered here. The resulting models are derived in the framework of the well--established theory of heat flow with memory due to Gurtin and Pipkin and according to the standard approximation procedure for the Kirchhoff plate.
File in questo prodotto:
File Dimensione Formato  
363.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 108.83 kB
Formato Adobe PDF
108.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/27661
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact