A new technique based on the use of highperformance fibre-reinforced concrete (HPFRC) in seismic structural walls with unbonded tendons is investigated herein. The aim of using this kind of structural wall, which develops a rocking behaviour under horizontal loading, is to limit or avoid damage during seismic events. The technique consists of strengthening the base of reinforced concrete (RC) walls provided with unbonded tendons by replacing the regular concrete at the wall toes with HPFRC, which can enhance the wall properties and be used to strengthen or repair existing RC walls. A full-scale test was performed on a rocking wall, before and after strengthening at the wall toes. Local deformations at the toes were measured in detail to quantify the extent of concrete damage in relation to wall drift and to assist future theoretical modelling. The results show that the strengthening technique can considerably limit damage at the ultimate state.

RC STRUCTURAL WALL WITH UNBONDED TENDONS STRENGTHENED WITH HIGH-PERFORMANCE FIBER-REINFORCED CONCRETE

PRETI, Marco;MEDA, Alberto
2015-01-01

Abstract

A new technique based on the use of highperformance fibre-reinforced concrete (HPFRC) in seismic structural walls with unbonded tendons is investigated herein. The aim of using this kind of structural wall, which develops a rocking behaviour under horizontal loading, is to limit or avoid damage during seismic events. The technique consists of strengthening the base of reinforced concrete (RC) walls provided with unbonded tendons by replacing the regular concrete at the wall toes with HPFRC, which can enhance the wall properties and be used to strengthen or repair existing RC walls. A full-scale test was performed on a rocking wall, before and after strengthening at the wall toes. Local deformations at the toes were measured in detail to quantify the extent of concrete damage in relation to wall drift and to assist future theoretical modelling. The results show that the strengthening technique can considerably limit damage at the ultimate state.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/273127
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 26
social impact