We used immunohistochemical detection of the Fos protein to study the neuronal activation in the brain of methoxyfluorane-anesthetized rats after noxious deep somatic or visceral stimulation. The anesthesia was effective in triggering gene induction in many brain regions. Nevertheless, Fos appeared de novo in several brain nuclei following noxious stimulation in anesthetized animals. This could be of clinical relevance, as it suggests that the gas anesthetic does not suppress noxious stimulus-evoked reactivity in brain neurons. Two types of visceronociceptive stimuli were used to compare the effects of a diffuse visceral inflammation (peritoneal inflammation) with those of a more restricted inflammation (urinary bladder inflammation). In the same supraspinal areas, there were very few immunostained neurons in unstimulated controls, whereas Fos-positive cells were slightly more numerous in anesthetized controls and significantly more numerous after noxious stimulation. The peritoneal inflammation induced more Fos-labeled neurons than the restricted visceral stimulation. Labeled cells were found in these cases mainly in the ventrolateral medulla, parabrachial complex, dorsal raphe nucleus, periaqueductal gray, several hypothalamic and thalamic nuclei, amygdaloid complex, and cortex. Altogether these findings indicated that somatic and visceral inputs generally activate the same neuronal groups. However, a separation between the activation of somatic and visceral pathways was found in some brain nuclei, such as the parabrachial complex, hypothalamic, and thalamic nuclei.

Expression of Fos immunoreactivity in the rat supraspinal regions following noxious visceral stimulation

RODELLA, Luigi Fabrizio;REZZANI, Rita;
1998-01-01

Abstract

We used immunohistochemical detection of the Fos protein to study the neuronal activation in the brain of methoxyfluorane-anesthetized rats after noxious deep somatic or visceral stimulation. The anesthesia was effective in triggering gene induction in many brain regions. Nevertheless, Fos appeared de novo in several brain nuclei following noxious stimulation in anesthetized animals. This could be of clinical relevance, as it suggests that the gas anesthetic does not suppress noxious stimulus-evoked reactivity in brain neurons. Two types of visceronociceptive stimuli were used to compare the effects of a diffuse visceral inflammation (peritoneal inflammation) with those of a more restricted inflammation (urinary bladder inflammation). In the same supraspinal areas, there were very few immunostained neurons in unstimulated controls, whereas Fos-positive cells were slightly more numerous in anesthetized controls and significantly more numerous after noxious stimulation. The peritoneal inflammation induced more Fos-labeled neurons than the restricted visceral stimulation. Labeled cells were found in these cases mainly in the ventrolateral medulla, parabrachial complex, dorsal raphe nucleus, periaqueductal gray, several hypothalamic and thalamic nuclei, amygdaloid complex, and cortex. Altogether these findings indicated that somatic and visceral inputs generally activate the same neuronal groups. However, a separation between the activation of somatic and visceral pathways was found in some brain nuclei, such as the parabrachial complex, hypothalamic, and thalamic nuclei.
File in questo prodotto:
File Dimensione Formato  
28.98.pdf

gestori archivio

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 496.19 kB
Formato Adobe PDF
496.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/27218
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 62
social impact