Doxorubicin (DOX) is an anticancer drug with cardiotoxic side effects mostly caused by iron homeostasis dysregulation. Mitochondria are involved in iron trafficking and mitochondrial ferritin (FtMt) was shown to provide protection against cellular iron imbalance. Therefore, we hypothesized that FtMt overexpression could limit DOX effects on iron homeostasis. Heart???s homogenates of DOXtreated C57BL/6 mice were analyzed for cytosolic and mitochondrial iron-related proteins??? expression and activity, revealing high cytosolic ferritin and ferritin-bound iron, low transferrin-receptor 1 and a strong hepcidin upregulation. Mitochondrial iron-related proteins (aconitase, succinatedehydrogenase, frataxin) seemed, however, unaffected, although a partial inactivation of superoxide dismutase 2 was detected. Importantly, the ectopic expression of FtMt in human HeLa cells partially reverted DOX-induced iron imbalance. Our results, while confirming DOX effects on iron homeostasis, demonstrate that DOX affects more cytosolic than mitochondrial iron metabolism both in murine hearts and human HeLa cells and that FtMt overexpression is able to prevent most of these effects in HeLa cells

Protective effect of mitochondrial ferritin on cytosolic iron dysregulation induced by doxorubicin in HeLa cells.

BIASIOTTO, Giorgio;MACCARINELLI, Federica;ZANELLA, Isabella;PORRINI, Vanessa
2013-01-01

Abstract

Doxorubicin (DOX) is an anticancer drug with cardiotoxic side effects mostly caused by iron homeostasis dysregulation. Mitochondria are involved in iron trafficking and mitochondrial ferritin (FtMt) was shown to provide protection against cellular iron imbalance. Therefore, we hypothesized that FtMt overexpression could limit DOX effects on iron homeostasis. Heart???s homogenates of DOXtreated C57BL/6 mice were analyzed for cytosolic and mitochondrial iron-related proteins??? expression and activity, revealing high cytosolic ferritin and ferritin-bound iron, low transferrin-receptor 1 and a strong hepcidin upregulation. Mitochondrial iron-related proteins (aconitase, succinatedehydrogenase, frataxin) seemed, however, unaffected, although a partial inactivation of superoxide dismutase 2 was detected. Importantly, the ectopic expression of FtMt in human HeLa cells partially reverted DOX-induced iron imbalance. Our results, while confirming DOX effects on iron homeostasis, demonstrate that DOX affects more cytosolic than mitochondrial iron metabolism both in murine hearts and human HeLa cells and that FtMt overexpression is able to prevent most of these effects in HeLa cells
File in questo prodotto:
File Dimensione Formato  
2013 Protective effect of mitochondrial ferritin on cytosolic iron dysregulation induced by doxorubicin in HeLa cells.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 567.25 kB
Formato Adobe PDF
567.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/259106
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact