The paper provides a scheme for phase separation and transition by accounting for diffusion, dynamic equations and consistency with thermodynamics. The constituents are compressible fluids thus improving the model of a previous approach. Moreover a possible saturation effect for the concentration of a constituent is made explicit. The mass densities of the constituents are independent of temperature. The evolution of concentration is described by the standard equation for mixtures but the balance of energy and entropy of the mixture are stated as for a single constituent. However, due to the non-simple character of the mixture, an extra-energy flux is allowed to occur. Also motion and diffusion effects are considered by letting the stress in the mixture have additive viscous terms and, remarkably, the chemical potential contains a quadratic term in the stretching tensor. As a result a whole set of evolution equations is set up for the concentration, the velocity, and the temperature. Shear-induced mixing and demixing are examined. A maximum theorem is proved which implies that the concentration of the mixture has values from 0 to 1 as is required from the physical standpoint.

Phase transition and separation in compressible Cahn-Hilliard fluids

GIORGI, Claudio;
2014-01-01

Abstract

The paper provides a scheme for phase separation and transition by accounting for diffusion, dynamic equations and consistency with thermodynamics. The constituents are compressible fluids thus improving the model of a previous approach. Moreover a possible saturation effect for the concentration of a constituent is made explicit. The mass densities of the constituents are independent of temperature. The evolution of concentration is described by the standard equation for mixtures but the balance of energy and entropy of the mixture are stated as for a single constituent. However, due to the non-simple character of the mixture, an extra-energy flux is allowed to occur. Also motion and diffusion effects are considered by letting the stress in the mixture have additive viscous terms and, remarkably, the chemical potential contains a quadratic term in the stretching tensor. As a result a whole set of evolution equations is set up for the concentration, the velocity, and the temperature. Shear-induced mixing and demixing are examined. A maximum theorem is proved which implies that the concentration of the mixture has values from 0 to 1 as is required from the physical standpoint.
File in questo prodotto:
File Dimensione Formato  
FGM_DCDS_B.pdf

gestori archivio

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 739.64 kB
Formato Adobe PDF
739.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/257303
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact