Very large mechanical stresses and huge volume changes emerge during intercalation and extraction of Lithium in battery electrodes. Mechanical failure is responsible for poor cyclic behavior and quick fading of electrical performance, especially in energy storage materials for the next generation of Li-ion batteries. A multi scale modeling of the phenomena that lead to mechanical degradation and failure in electrodes is the concern of the present publication. The computational homogenization technique is tailored to model the multi physics events that coexist during batteries charging and discharging cycles. At the macroscale, diffusion–advection equations model the coupling between electrochemistry and mechanics in the whole cell. The multi-component porous electrode, migration, diffusion, and intercalation of Lithium in the active particles, the swelling of the latter are modeled at the micro-scale. A rigorous thermodynamics setting is stated and scale transitions are formulated

A computational homogenization approach for Li-ion battery cells: Part 1 – formulation

SALVADORI, Alberto;GRAZIOLI, Davide
2014-01-01

Abstract

Very large mechanical stresses and huge volume changes emerge during intercalation and extraction of Lithium in battery electrodes. Mechanical failure is responsible for poor cyclic behavior and quick fading of electrical performance, especially in energy storage materials for the next generation of Li-ion batteries. A multi scale modeling of the phenomena that lead to mechanical degradation and failure in electrodes is the concern of the present publication. The computational homogenization technique is tailored to model the multi physics events that coexist during batteries charging and discharging cycles. At the macroscale, diffusion–advection equations model the coupling between electrochemistry and mechanics in the whole cell. The multi-component porous electrode, migration, diffusion, and intercalation of Lithium in the active particles, the swelling of the latter are modeled at the micro-scale. A rigorous thermodynamics setting is stated and scale transitions are formulated
File in questo prodotto:
File Dimensione Formato  
JMPS 2014 - Li batteries Comp. Hom. 1.pdf

solo utenti autorizzati

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/254304
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 59
social impact