The main goal of coding theory is to devise efficient systems to exploit the full capacity of a communication channel, thus achieving an arbitrarily small error probability. Low Density Parity Check (LDPC) codes are a family of block codes---characterised by admitting a sparse parity check matrix---with good correction capabilities. In the present paper the orbits of subspaces of a finite projective space under the action of a Singer cycle are investigated. The incidence matrix associated to each of these structures yields an LDPC code in a natural manner.

LDPC codes from Singer cycles

GIUZZI, Luca;
2009-01-01

Abstract

The main goal of coding theory is to devise efficient systems to exploit the full capacity of a communication channel, thus achieving an arbitrarily small error probability. Low Density Parity Check (LDPC) codes are a family of block codes---characterised by admitting a sparse parity check matrix---with good correction capabilities. In the present paper the orbits of subspaces of a finite projective space under the action of a Singer cycle are investigated. The incidence matrix associated to each of these structures yields an LDPC code in a natural manner.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/24717
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact