Several laboratory experiments have demonstrated the effectiveness of steel fibers in substituting the minimum code-required shear reinforcement in beams, particularly in precast high-performance concrete structures. Despite the large number of experimental results available, only a few numerical studies have been published concerning fiber-reinforced concrete structures. The behavior of different kinds of full-scale steel fiber-reinforced concrete elements is analyzed herein using a finite element code based on the modified compression field theory (MCFT) and the disturbed stress field model (DSFM), and suitably adapted for steel fiber reinforcement. The numerical model is validated against the experimental results obtained on full-scale fiber-reinforced concrete (FRC) structural elements and is shown to adequately simulate the strength, stiffness, ductility, crack pattern development, and failure modes of all specimens tested, including those lightly reinforced or with fibers only.

Compression Field Modeling of Fiber Reinforced Concrete Members under Shear Loading

MINELLI, Fausto;
2006-01-01

Abstract

Several laboratory experiments have demonstrated the effectiveness of steel fibers in substituting the minimum code-required shear reinforcement in beams, particularly in precast high-performance concrete structures. Despite the large number of experimental results available, only a few numerical studies have been published concerning fiber-reinforced concrete structures. The behavior of different kinds of full-scale steel fiber-reinforced concrete elements is analyzed herein using a finite element code based on the modified compression field theory (MCFT) and the disturbed stress field model (DSFM), and suitably adapted for steel fiber reinforcement. The numerical model is validated against the experimental results obtained on full-scale fiber-reinforced concrete (FRC) structural elements and is shown to adequately simulate the strength, stiffness, ductility, crack pattern development, and failure modes of all specimens tested, including those lightly reinforced or with fibers only.
File in questo prodotto:
File Dimensione Formato  
FINAL103s26.pdf

gestori archivio

Tipologia: Abstract
Licenza: DRM non definito
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/24657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 37
social impact