We report experimental and theoretical studies of Raman-induced cross-phase modulational instabilities (XPMI) in a high-birefringence, normally dispersive optical fiber. Experimental results reveal that the Raman–Stokes wave, generated by a quasi-CW pump beam, interacts with the latter to create a novel type of XPMI sidebands. These sidebands are characterized by a narrow gain bandwidth. The sideband frequencies are well reproduced by a linear stability analysis as well as by full numerical solutions of the coupled generalized nonlinear Schrödinger equations.
Cross-phase modulational instability induced by Raman scattering in highly birefringent fiber
WABNITZ, Stefan;
2013-01-01
Abstract
We report experimental and theoretical studies of Raman-induced cross-phase modulational instabilities (XPMI) in a high-birefringence, normally dispersive optical fiber. Experimental results reveal that the Raman–Stokes wave, generated by a quasi-CW pump beam, interacts with the latter to create a novel type of XPMI sidebands. These sidebands are characterized by a narrow gain bandwidth. The sideband frequencies are well reproduced by a linear stability analysis as well as by full numerical solutions of the coupled generalized nonlinear Schrödinger equations.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ol-38-24-5327.pdf
gestori archivio
Tipologia:
Documento in Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
586.84 kB
Formato
Adobe PDF
|
586.84 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.