We report experimental and theoretical studies of Raman-induced cross-phase modulational instabilities (XPMI) in a high-birefringence, normally dispersive optical fiber. Experimental results reveal that the Raman–Stokes wave, generated by a quasi-CW pump beam, interacts with the latter to create a novel type of XPMI sidebands. These sidebands are characterized by a narrow gain bandwidth. The sideband frequencies are well reproduced by a linear stability analysis as well as by full numerical solutions of the coupled generalized nonlinear Schrödinger equations.

Cross-phase modulational instability induced by Raman scattering in highly birefringent fiber

WABNITZ, Stefan;
2013-01-01

Abstract

We report experimental and theoretical studies of Raman-induced cross-phase modulational instabilities (XPMI) in a high-birefringence, normally dispersive optical fiber. Experimental results reveal that the Raman–Stokes wave, generated by a quasi-CW pump beam, interacts with the latter to create a novel type of XPMI sidebands. These sidebands are characterized by a narrow gain bandwidth. The sideband frequencies are well reproduced by a linear stability analysis as well as by full numerical solutions of the coupled generalized nonlinear Schrödinger equations.
File in questo prodotto:
File Dimensione Formato  
ol-38-24-5327.pdf

gestori archivio

Tipologia: Documento in Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 586.84 kB
Formato Adobe PDF
586.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/237904
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact