The proapoptotic death receptor 5 (DR5) expressed by tumor associated endothelial cells (TECs) mediates vascular disrupting effects of human CD34(+) cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand (CD34-TRAIL (+) cells) in mice. Indeed, lack of DR5 on TECs causes resistance to CD34-TRAIL (+) cells. By xenografting in nonobese diabetic/severe combined immunodeficient mice the TRAIL-resistant lymphoma cell line SU-DHL-4V, which generates tumors lacking endothelial DR5 expression, here we demonstrate for the first time that the Akt inhibitor perifosine induces in vivo DR5 expression on TECs, thereby overcoming tumor resistance to the vascular disruption activity of CD34-TRAIL (+) cells. In fact, CD34-TRAIL (+) cells combined with perifosine, but not CD34-TRAIL (+) cells alone, exerted marked antivascular effects and caused a threefold increase of hemorrhagic necrosis in SU-DHL-4V tumors. Consistent with lack of DR5 expression, CD34-TRAIL (+) cells failed to affect the growth of SU-DHL-4V tumors, but CD34-TRAIL (+) cells plus perifosine reduced tumor volumes by 60 % compared with controls. In view of future clinical studies using membrane-bound TRAIL, our results highlight a strategy to rescue patients with primary or acquired resistance due to the lack of DR5 expression in tumor vasculature.

Induction of death receptor 5 expression in tumor vasculature by perifosine restores the vascular disruption activity of TRAIL-expressing CD34(+) cells.

GIACOMINI, Arianna;MITOLA, Stefania Maria Filomena;
2013-01-01

Abstract

The proapoptotic death receptor 5 (DR5) expressed by tumor associated endothelial cells (TECs) mediates vascular disrupting effects of human CD34(+) cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand (CD34-TRAIL (+) cells) in mice. Indeed, lack of DR5 on TECs causes resistance to CD34-TRAIL (+) cells. By xenografting in nonobese diabetic/severe combined immunodeficient mice the TRAIL-resistant lymphoma cell line SU-DHL-4V, which generates tumors lacking endothelial DR5 expression, here we demonstrate for the first time that the Akt inhibitor perifosine induces in vivo DR5 expression on TECs, thereby overcoming tumor resistance to the vascular disruption activity of CD34-TRAIL (+) cells. In fact, CD34-TRAIL (+) cells combined with perifosine, but not CD34-TRAIL (+) cells alone, exerted marked antivascular effects and caused a threefold increase of hemorrhagic necrosis in SU-DHL-4V tumors. Consistent with lack of DR5 expression, CD34-TRAIL (+) cells failed to affect the growth of SU-DHL-4V tumors, but CD34-TRAIL (+) cells plus perifosine reduced tumor volumes by 60 % compared with controls. In view of future clinical studies using membrane-bound TRAIL, our results highlight a strategy to rescue patients with primary or acquired resistance due to the lack of DR5 expression in tumor vasculature.
File in questo prodotto:
File Dimensione Formato  
giacomini angiogenesis 2013.pdf

accesso aperto

Tipologia: Full Text
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri
giacomini suppl 2013.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/221703
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact