The structural and functional effects of the ‘‘edge-to-edge’’ technique on the human mitral valve have been investigated, paying particular attention to the diastolic phase. An advanced finite element model of the valve has been developed, using a hyperelastic material schematization, suitable geometry and constraint conditions, and an effective fluidodynamic analysis. The edge-to-edge suture has been applied on this model and the diastolic phase has been simulated. The results of this calculation show that the operation increases the transvalvular pressure and the maximum stress in the leaflets, which reaches a level similar to that of the systolic phase. The influence of suture position and extension, and the mitral annulus dimension has also been investigated. The results indicate that a lateral location of the stitch is better than a central one, both regarding valve functionality (pressure level and mobility) and internal stresses level, that a longer suture worsens the valve functionality but reduces the stresses level, finally, that the dilatation of the mitral annulus does not affect the valve functionality but increases the stresses level.

Structural effects of an innovative surgical technique to repair heart valve defects

DONZELLA, Giorgio;
2005-01-01

Abstract

The structural and functional effects of the ‘‘edge-to-edge’’ technique on the human mitral valve have been investigated, paying particular attention to the diastolic phase. An advanced finite element model of the valve has been developed, using a hyperelastic material schematization, suitable geometry and constraint conditions, and an effective fluidodynamic analysis. The edge-to-edge suture has been applied on this model and the diastolic phase has been simulated. The results of this calculation show that the operation increases the transvalvular pressure and the maximum stress in the leaflets, which reaches a level similar to that of the systolic phase. The influence of suture position and extension, and the mitral annulus dimension has also been investigated. The results indicate that a lateral location of the stitch is better than a central one, both regarding valve functionality (pressure level and mobility) and internal stresses level, that a longer suture worsens the valve functionality but reduces the stresses level, finally, that the dilatation of the mitral annulus does not affect the valve functionality but increases the stresses level.
File in questo prodotto:
File Dimensione Formato  
Articolo-Journal of Biomechanics-Structural effects of an innovative surgical technique to repair heart valve defects.pdf

gestori archivio

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 780.63 kB
Formato Adobe PDF
780.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/21729
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 44
social impact