The role of nitric oxide (NO) in the induction of angiogenesis was evaluated in a murine heart endothelioma cell line (H.end.FB) carrying the mT oncogene. Two clonal derivatives of H.end.FB, H80 and H73, exhibiting different NO synthase (NOS) activities were selected and used in the study. The relationship among NOS activity and tumor cell behaviour (growth, and angiogenic capacity) and the molecular control of gene expression were investigated. H.end.FB and H80 on one side and H73 on the other side exhibited the highest and lowest NOS activity, respectively. Cell growth was inversely correlated to the amount of NO produced by the cell lines. Conversely, in the avascular rabbit cornea assay, H.end.FB and H80 cells were strongly angiogenic, while H73 were poorly angiogenic, indicating that the ability of the cells to induce neovascularization was associated with the extent of NO produced. Consistently, systemic administration to rabbits of the NOS inhibitor N(w)-nitro-L-arginine methyl ester (L-NAME) significantly reduced the angiogenicity of H.end.FB cells. RT-PCR evidenced that H.end.FB expressed mRNA for TGF-beta1 and all VEGF isoforms, VEGF165 being predominantly expressed. NOS inhibition reduced the basal expression of VEGF isoforms, while it markedly potentiated TGF-beta1 expression. These results indicate that the endogenous production of NO in tumor cells can serve as an autocrine/paracrine signalling mechanism of progression, by controlling angiogenic factor/modulator expression

Nitric oxide modulates the angiogenic phenotype of middle-T transformed endothelial cells.

MITOLA, Stefania Maria Filomena;
2001-01-01

Abstract

The role of nitric oxide (NO) in the induction of angiogenesis was evaluated in a murine heart endothelioma cell line (H.end.FB) carrying the mT oncogene. Two clonal derivatives of H.end.FB, H80 and H73, exhibiting different NO synthase (NOS) activities were selected and used in the study. The relationship among NOS activity and tumor cell behaviour (growth, and angiogenic capacity) and the molecular control of gene expression were investigated. H.end.FB and H80 on one side and H73 on the other side exhibited the highest and lowest NOS activity, respectively. Cell growth was inversely correlated to the amount of NO produced by the cell lines. Conversely, in the avascular rabbit cornea assay, H.end.FB and H80 cells were strongly angiogenic, while H73 were poorly angiogenic, indicating that the ability of the cells to induce neovascularization was associated with the extent of NO produced. Consistently, systemic administration to rabbits of the NOS inhibitor N(w)-nitro-L-arginine methyl ester (L-NAME) significantly reduced the angiogenicity of H.end.FB cells. RT-PCR evidenced that H.end.FB expressed mRNA for TGF-beta1 and all VEGF isoforms, VEGF165 being predominantly expressed. NOS inhibition reduced the basal expression of VEGF isoforms, while it markedly potentiated TGF-beta1 expression. These results indicate that the endogenous production of NO in tumor cells can serve as an autocrine/paracrine signalling mechanism of progression, by controlling angiogenic factor/modulator expression
File in questo prodotto:
File Dimensione Formato  
2001 IJBCB.pdf

accesso aperto

Tipologia: Full Text
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 270.49 kB
Formato Adobe PDF
270.49 kB Adobe PDF Visualizza/Apri
morbidelli 2001 erratum[1].pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 21.52 kB
Formato Adobe PDF
21.52 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/21513
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 9
social impact