Mitochondrial ferritin (FtMt) is a novel ferritin type specifically targeted to mitochondria. It is highly expressed in the human testis and in sideroblasts from patients with sideroblastic anemia, but other organs have not been studied. To study its expression in the main organs of the mouse, we first used RT-PCR and then produced recombinant mouse FtMt and specific antibodies. Immunohistochemistry analyses confirmed that FtMt is highly expressed in mouse testis, particularly in spermatocytes and interstitial Leydig cells. The protein was also identified in other organs including heart, brain, spinal cord, kidney, and pancreatic islet of Langerhans but not in liver and splenocytes, which have iron storage function and express high levels of cytosolic ferritins. Results indicate that the primary function of ferritin FtMt is not involved in storing cellular or body iron, but its association with cell types characterized by high metabolic activity and oxygen consumption suggests a role in protecting mitochondria from iron-dependent oxidative damage.

Mitochondrial Ferritin Expression in Adult Mouse Tissues.

BIASIOTTO, Giorgio;AROSIO, Paolo;
2007-01-01

Abstract

Mitochondrial ferritin (FtMt) is a novel ferritin type specifically targeted to mitochondria. It is highly expressed in the human testis and in sideroblasts from patients with sideroblastic anemia, but other organs have not been studied. To study its expression in the main organs of the mouse, we first used RT-PCR and then produced recombinant mouse FtMt and specific antibodies. Immunohistochemistry analyses confirmed that FtMt is highly expressed in mouse testis, particularly in spermatocytes and interstitial Leydig cells. The protein was also identified in other organs including heart, brain, spinal cord, kidney, and pancreatic islet of Langerhans but not in liver and splenocytes, which have iron storage function and express high levels of cytosolic ferritins. Results indicate that the primary function of ferritin FtMt is not involved in storing cellular or body iron, but its association with cell types characterized by high metabolic activity and oxygen consumption suggests a role in protecting mitochondria from iron-dependent oxidative damage.
File in questo prodotto:
File Dimensione Formato  
07-MtF-mouse.pdf

gestori archivio

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 2.56 MB
Formato Adobe PDF
2.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/21427
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact