We consider a one-parameter family of problems, governing, for any fixed parameter, the motion of a linear viscoelastic fluid in a twodimensional domain with periodic boundary conditions. The asymptotic behavior of each problem is analyzed, by proving the existence of the global attractor. Moreover, letting the parameter go to zero, since the memory effect disappears, we obtain a limiting problem, given by the Navier–Stokes equations. For any fixed parameter, we construct an exponential attractor. The resulting family is robust, meaning that these exponential attractors converge, in an appropriate sense, to an exponential attractor of the limiting problem.

Singular limit of equations for linear viscoelastic fluids with periodic boundary conditions

VUK, Elena
2006-01-01

Abstract

We consider a one-parameter family of problems, governing, for any fixed parameter, the motion of a linear viscoelastic fluid in a twodimensional domain with periodic boundary conditions. The asymptotic behavior of each problem is analyzed, by proving the existence of the global attractor. Moreover, letting the parameter go to zero, since the memory effect disappears, we obtain a limiting problem, given by the Navier–Stokes equations. For any fixed parameter, we construct an exponential attractor. The resulting family is robust, meaning that these exponential attractors converge, in an appropriate sense, to an exponential attractor of the limiting problem.
File in questo prodotto:
File Dimensione Formato  
Gatti-Vuk.pdf

gestori archivio

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 255.23 kB
Formato Adobe PDF
255.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
IntJNonMech_2006_GV_INFO_ADD.pdf

gestori archivio

Tipologia: Altro materiale allegato
Licenza: DRM non definito
Dimensione 79.07 kB
Formato Adobe PDF
79.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/21266
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
social impact