The immersed boundary (IB) method is both a mathematical formulation and a numerical method for fluid-structure interaction problems, in which immersed incompressible visco-elastic bodies or boundaries interact with an incompressible fluid. Previous formulations of the IB method were not able to treat appropriately immersed materials of finite, nonzero thickness modeled by general hyper-elastic constitutive laws because of the lack of appropriate transmission conditions between the immersed body and the surrounding fluid in the case of a nonzero jump in normal stress at the solid-fluid interface. (Such a jump does not arise when the solid is comprised of fibers that run parallel to the interface, but typically does arise in other cases, e.g., when the solid contains elastic fibers that terminate at the solid-fluid interface.) We present a derivation of the IB method that takes into account in an appropriate way the missing term. The derivation presented in this paper starts from a separation of the stress that appears in the principle of virtual work. The stress is divided into its fluid-like and solid-like components, and each of these two terms is treated in its natural framework, i.e., the Eulerian framework for the fluid-like stress and the Lagrangian framework for the solid-like stress. We describe how the IB method can be used in conjunction with standard formulations of continuum mechanics models for immersed incompressible elastic materials and present some illustrative numerical experiments.

On the hyper-elastic formulation of the immersed boundary method

GASTALDI, Lucia;
2008-01-01

Abstract

The immersed boundary (IB) method is both a mathematical formulation and a numerical method for fluid-structure interaction problems, in which immersed incompressible visco-elastic bodies or boundaries interact with an incompressible fluid. Previous formulations of the IB method were not able to treat appropriately immersed materials of finite, nonzero thickness modeled by general hyper-elastic constitutive laws because of the lack of appropriate transmission conditions between the immersed body and the surrounding fluid in the case of a nonzero jump in normal stress at the solid-fluid interface. (Such a jump does not arise when the solid is comprised of fibers that run parallel to the interface, but typically does arise in other cases, e.g., when the solid contains elastic fibers that terminate at the solid-fluid interface.) We present a derivation of the IB method that takes into account in an appropriate way the missing term. The derivation presented in this paper starts from a separation of the stress that appears in the principle of virtual work. The stress is divided into its fluid-like and solid-like components, and each of these two terms is treated in its natural framework, i.e., the Eulerian framework for the fluid-like stress and the Lagrangian framework for the solid-like stress. We describe how the IB method can be used in conjunction with standard formulations of continuum mechanics models for immersed incompressible elastic materials and present some illustrative numerical experiments.
File in questo prodotto:
File Dimensione Formato  
reprint.pdf

gestori archivio

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/20668
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 118
  • ???jsp.display-item.citation.isi??? 102
social impact