The mechanochemical treatment of a V2O5/MoO 3 oxide mixture (V/Mo = 70/30 at %) was performed in planetary and vibratory mills under varying treatment times and media. The resulting samples were characterized using XRD analysis, micro-Raman spectroscopy, and XPS; their specific surface areas and catalytic activities in n-butane and benzene oxidation reactions were determined. It was found that the treatment of the oxide mixture in water resulted in chaotic degradation of the parent oxides, a decrease in crystallite sizes, and an increase in the specific surface area at a sufficiently uniform oxide distribution over the sample. The treatment in ethanol was accompanied by an anisotropic deformation of the V2O 5 crystal by layer sliding in parallel to the vanadyl plane (010) and a chaotic degradation of MoO3 crystals. This process was accompanied by the partial nonuniform supporting of vanadium oxide crystals onto the surface of molybdenum oxide to increase the V/Mo ratio on the sample surface. In this case, the particle size of oxides decreased and the specific surface areas of samples increased. It was found that the treatment of the oxide mixture in air (dry treatment) resulted in the most significant decrease in the sizes of V2O5 and MoO3 crystals and a growth in the specific surface area. The amorphization of the parent oxides and the formation of MoV2O8 were observed as the treatment time was increased; in this case, an excess of amorphous vanadium oxide was supported onto the surface of this compound. It was found that, in all types of mechanochemical treatment, the binding energies of the core electrons of vanadium and molybdenum remained almost unchanged to indicate the constancy of the oxidation states of these elements. Mechanochemical treatment resulted in an increase in the activity of the samples in n-butane and benzene oxidation reactions and in an increase in the selectivity of maleic anhydride formation. In this case, an increase in the specific catalytic activity of the samples correlated with a decrease in the crystallite size of vanadium oxide, whereas selectivity correlated with an increase in the relative concentration of the V2O5 plane (010). In these reactions, samples after dry treatment exhibited a maximum activity, which can be related to the formation of MoV2O8.

Effect of the mechanochemical treatment of a V2O5/MoO3 oxide mixture on its properties

DEPERO, Laura Eleonora
2008-01-01

Abstract

The mechanochemical treatment of a V2O5/MoO 3 oxide mixture (V/Mo = 70/30 at %) was performed in planetary and vibratory mills under varying treatment times and media. The resulting samples were characterized using XRD analysis, micro-Raman spectroscopy, and XPS; their specific surface areas and catalytic activities in n-butane and benzene oxidation reactions were determined. It was found that the treatment of the oxide mixture in water resulted in chaotic degradation of the parent oxides, a decrease in crystallite sizes, and an increase in the specific surface area at a sufficiently uniform oxide distribution over the sample. The treatment in ethanol was accompanied by an anisotropic deformation of the V2O 5 crystal by layer sliding in parallel to the vanadyl plane (010) and a chaotic degradation of MoO3 crystals. This process was accompanied by the partial nonuniform supporting of vanadium oxide crystals onto the surface of molybdenum oxide to increase the V/Mo ratio on the sample surface. In this case, the particle size of oxides decreased and the specific surface areas of samples increased. It was found that the treatment of the oxide mixture in air (dry treatment) resulted in the most significant decrease in the sizes of V2O5 and MoO3 crystals and a growth in the specific surface area. The amorphization of the parent oxides and the formation of MoV2O8 were observed as the treatment time was increased; in this case, an excess of amorphous vanadium oxide was supported onto the surface of this compound. It was found that, in all types of mechanochemical treatment, the binding energies of the core electrons of vanadium and molybdenum remained almost unchanged to indicate the constancy of the oxidation states of these elements. Mechanochemical treatment resulted in an increase in the activity of the samples in n-butane and benzene oxidation reactions and in an increase in the selectivity of maleic anhydride formation. In this case, an increase in the specific catalytic activity of the samples correlated with a decrease in the crystallite size of vanadium oxide, whereas selectivity correlated with an increase in the relative concentration of the V2O5 plane (010). In these reactions, samples after dry treatment exhibited a maximum activity, which can be related to the formation of MoV2O8.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/18857
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact