We discuss a nonlinear model for relaxation by energy redistribution within an isolated, closed system composed of noninteracting identical particles with N energy levels. The time-dependent occupation probabilities are assumed to obey a novel set of nonlinear rate equations that maintain invariant the mean energy and the normalization condition. The entropy is a nondecreasing function of time until the initially nonzero occupation probabilities reach a Boltzmann-like canonical distribution over the occupied energy eigenstates. Initially zero occupation probabilities, instead, remain zero at all times. The solutions of the rate equations are unique and well defined for arbitrary initial conditions and for all times. The existence and uniqueness both forward and backward in time allows the reconstruction of the ancestral or primordial lowest entropy state. By casting the rate equations in terms not of the probabilities but of their positive square roots, they unfold from the assumption that time evolution is at all times along the local direction of steepest entropy ascent or, equivalently, of maximal entropy generation. These rate equations have the same mathematical structure and basic features as the nonlinear dynamical equation proposed in a series of papers ending with G. P. Beretta, Found. Phys. 17, 365 (1987) and recently rediscovered by S. Gheorghiu-Svirschevski, Phys. Rev. A 63, 022105 (2001); 63, 054102 (2001). Numerical results illustrate the features of the dynamics and the differences from the rate equations recently considered for the same problem by M. Lemanska and Z. Jaeger, Physica D 170, 72 (2002). We also interpret the functionals appearing in the rate eqautions as nonequilibrium generalizations of the thermodynamic-equilibrium Massieu characteristic function and inverse temperature, respectively.

Nonlinear model dynamics for closed-system, constrained, maximal-entropy-generation relaxation by energy redistribution

BERETTA, Gian Paolo
2006-01-01

Abstract

We discuss a nonlinear model for relaxation by energy redistribution within an isolated, closed system composed of noninteracting identical particles with N energy levels. The time-dependent occupation probabilities are assumed to obey a novel set of nonlinear rate equations that maintain invariant the mean energy and the normalization condition. The entropy is a nondecreasing function of time until the initially nonzero occupation probabilities reach a Boltzmann-like canonical distribution over the occupied energy eigenstates. Initially zero occupation probabilities, instead, remain zero at all times. The solutions of the rate equations are unique and well defined for arbitrary initial conditions and for all times. The existence and uniqueness both forward and backward in time allows the reconstruction of the ancestral or primordial lowest entropy state. By casting the rate equations in terms not of the probabilities but of their positive square roots, they unfold from the assumption that time evolution is at all times along the local direction of steepest entropy ascent or, equivalently, of maximal entropy generation. These rate equations have the same mathematical structure and basic features as the nonlinear dynamical equation proposed in a series of papers ending with G. P. Beretta, Found. Phys. 17, 365 (1987) and recently rediscovered by S. Gheorghiu-Svirschevski, Phys. Rev. A 63, 022105 (2001); 63, 054102 (2001). Numerical results illustrate the features of the dynamics and the differences from the rate equations recently considered for the same problem by M. Lemanska and Z. Jaeger, Physica D 170, 72 (2002). We also interpret the functionals appearing in the rate eqautions as nonequilibrium generalizations of the thermodynamic-equilibrium Massieu characteristic function and inverse temperature, respectively.
File in questo prodotto:
File Dimensione Formato  
GPBeretta-PhysRevE-73-026113-2006.pdf

gestori archivio

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 289.45 kB
Formato Adobe PDF
289.45 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/18487
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 79
  • ???jsp.display-item.citation.isi??? 74
social impact