Subsurface crack mode II propagation parallel to the contact surface is a damage mechanism leading to dramatic failure in many components subjected to cyclic loading. A weight function (WF) was elaborated for calculating the applied mode II stress intensity factor (SIF) of a crack in a two-dimensional half-space in plane strain condition, for crack completely closed and frictionless contact between the crack faces. With respect to other methods, the WF allows faster SIF calculation, thus being suitable for simulation of many repeated load cycles and fatigue crack propagation. The WF was applied for simulating a case of rolling contact experiments found in the literature, and good agreement between experimental and numerical results was obtained, showing the effectiveness of the WF method in damage tolerant design.
A numerical approach to subsurface crack propagation assessment in rolling contact
MAZZU', Angelo
2013-01-01
Abstract
Subsurface crack mode II propagation parallel to the contact surface is a damage mechanism leading to dramatic failure in many components subjected to cyclic loading. A weight function (WF) was elaborated for calculating the applied mode II stress intensity factor (SIF) of a crack in a two-dimensional half-space in plane strain condition, for crack completely closed and frictionless contact between the crack faces. With respect to other methods, the WF allows faster SIF calculation, thus being suitable for simulation of many repeated load cycles and fatigue crack propagation. The WF was applied for simulating a case of rolling contact experiments found in the literature, and good agreement between experimental and numerical results was obtained, showing the effectiveness of the WF method in damage tolerant design.File | Dimensione | Formato | |
---|---|---|---|
10.1111_ffe.12024.pdf
gestori archivio
Tipologia:
Full Text
Licenza:
DRM non definito
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.