Metabolic syndrome (MetS) is a set of metabolic alterations including high levels of low-density lipoprotein (LDL), which increase the risk of cardiomyopathy often leading to surgery. Despite inducing myopathy, statins are widely used to lower LDL. Cardiopulmonary bypass (Cpb) causes oxidative stress and metabolic injury, altering mitochondrial expression (Grp75) and endoplasmic reticulum (Grp78) chaperones, apoptotic enzymes (Bcl2 family) and increasing cardiomyocytes lipid/lipofuscin storage. We believe that cardiomyocytes from patients with MetS may be more sensitive to surgical stress, in particular after simvastatin therapy (MetS+Stat). Methods. The study group included ten patients with MetS, ten patients with Mets+Stat and ten healthy subjects. Myocardial biopsies were obtained both before and after-Cpb. Grp75, Grp78, Bax, Bcl2, lipids, lipofuscin and fibrosis were evaluated by immuno/histochemistry. MetS cardiomyocytes had higher Grp75, Bax, fibrosis and lipofuscin. MetS+Stat had lower Grp75 and higher Grp78 expressions, high Bax, fewer fibrosis and higher lipofuscin content. Cpb did not vary the fibrosis and lipids/lipofuscin content, although it influenced the chaperones and Bax expression in all groups. These changes were more profound in patients with MetS and even more so in patients with MetS+Stat. The results suggest that MetS and MetS+Stat cardiomyocytes were more highly stressed after-Cpb. Interestingly, simvastatin caused high stress even before-Cpb.

Metabolic Syndrome and chronic simvastatin therapy enhanced human cardiomyocyte stress before and after ischemia-reperfusion in cardio-pulmonary bypass patients

CORSETTI, Giovanni;BONOMINI, Francesca;REZZANI, Rita;ASSANELLI, Deodato
2012-01-01

Abstract

Metabolic syndrome (MetS) is a set of metabolic alterations including high levels of low-density lipoprotein (LDL), which increase the risk of cardiomyopathy often leading to surgery. Despite inducing myopathy, statins are widely used to lower LDL. Cardiopulmonary bypass (Cpb) causes oxidative stress and metabolic injury, altering mitochondrial expression (Grp75) and endoplasmic reticulum (Grp78) chaperones, apoptotic enzymes (Bcl2 family) and increasing cardiomyocytes lipid/lipofuscin storage. We believe that cardiomyocytes from patients with MetS may be more sensitive to surgical stress, in particular after simvastatin therapy (MetS+Stat). Methods. The study group included ten patients with MetS, ten patients with Mets+Stat and ten healthy subjects. Myocardial biopsies were obtained both before and after-Cpb. Grp75, Grp78, Bax, Bcl2, lipids, lipofuscin and fibrosis were evaluated by immuno/histochemistry. MetS cardiomyocytes had higher Grp75, Bax, fibrosis and lipofuscin. MetS+Stat had lower Grp75 and higher Grp78 expressions, high Bax, fewer fibrosis and higher lipofuscin content. Cpb did not vary the fibrosis and lipids/lipofuscin content, although it influenced the chaperones and Bax expression in all groups. These changes were more profound in patients with MetS and even more so in patients with MetS+Stat. The results suggest that MetS and MetS+Stat cardiomyocytes were more highly stressed after-Cpb. Interestingly, simvastatin caused high stress even before-Cpb.
File in questo prodotto:
File Dimensione Formato  
Corsetti IJIP 2012 acceptance of paper in press.pdf

gestori archivio

Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 504.87 kB
Formato Adobe PDF
504.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/165011
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact