Vascular endothelial growth factor receptor-2 (VEGFR2) is an endothelial cell receptor that plays a pivotal role in physiologic and pathologic angiogenesis and is a therapeutic target for angiogenesis-dependent diseases, including cancer. By leveraging on a dedicated nanomechanical biosensor, we investigated the nanoscale mechanical phenomena intertwined with VEGFR2 surface recognition by its prototypic ligand VEGF-A and its noncanonical ligand gremlin. We found that the two ligands bind the immobilized extracellular domain of VEGFR2 (sVEGFR2) with comparable binding affinity. Nevertheless, they interact with sVEGFR2 with different binding kinetics and drive different in-plane piconewton intermolecular forces, suggesting that the binding of VEGF-A or gremlin induces different conformational changes in sVEGFR2. These behaviors can be effectively described in terms of a different "nanomechanical affinity" of the two ligands for sVEGFR2, about 16-fold higher for VEGF-A with respect to gremlin. Such nanomechanical differences affect the biological activity driven by the two angiogenic factors in endothelial cells, as evidenced by a more rapid VEGFR2 clustering and a more potent mitogenic response triggered by VEGF-A in respect to gremlin. Together, these data point to surface intermolecular interactions on cell membrane between activated receptors as a key modulator of the intracellular signaling cascade. Vascular endothelial growth factor receptor-2 (VEGFR2) is an endothelial cell receptor that plays a pivotal role in physiologic and pathologic angiogenesis and is a therapeutic target for angiogenesis-dependent diseases, including cancer. By leveraging on a dedicated nanomechanical biosensor, we investigated the nanoscale mechanical phenomena intertwined with VEGFR2 surface recognition by its prototypic ligand VEGF-A and its noncanonical ligand gremlin. We found that the two ligands bind the immobilized extracellular domain of VEGFR2 (sVEGFR2) with comparable binding affinity. Nevertheless, they interact with sVEGFR2 with different binding kinetics and drive different in-plane piconewton intermolecular forces, suggesting that the binding of VEGF-A or gremlin induces different conformational changes in sVEGFR2. These behaviors can be effectively described in terms of a different "nanomechanical affinity" of the two ligands for sVEGFR2, about 16-fold higher for VEGF-A with respect to gremlin. Such nanomechanical differences affect the biological activity driven by the two angiogenic factors in endothelial cells, as evidenced by a more rapid VEGFR2 clustering and a more potent mitogenic response triggered by VEGF-A in respect to gremlin. Together, these data point to surface intermolecular interactions on cell membrane between activated receptors as a key modulator of the intracellular signaling cascade.

Role of Nanomechanics in Canonical and Noncanonical Pro-angiogenic Ligand/VEGF Receptor-2 Activation

MAIOLO, Daniele;MITOLA, Stefania Maria Filomena;LEALI, Daria;OLIVIERO, Giulio;RAVELLI, Cosetta;BUGATTI, Antonella;DEPERO, Laura Eleonora;PRESTA, Marco;BERGESE, Paolo
2012-01-01

Abstract

Vascular endothelial growth factor receptor-2 (VEGFR2) is an endothelial cell receptor that plays a pivotal role in physiologic and pathologic angiogenesis and is a therapeutic target for angiogenesis-dependent diseases, including cancer. By leveraging on a dedicated nanomechanical biosensor, we investigated the nanoscale mechanical phenomena intertwined with VEGFR2 surface recognition by its prototypic ligand VEGF-A and its noncanonical ligand gremlin. We found that the two ligands bind the immobilized extracellular domain of VEGFR2 (sVEGFR2) with comparable binding affinity. Nevertheless, they interact with sVEGFR2 with different binding kinetics and drive different in-plane piconewton intermolecular forces, suggesting that the binding of VEGF-A or gremlin induces different conformational changes in sVEGFR2. These behaviors can be effectively described in terms of a different "nanomechanical affinity" of the two ligands for sVEGFR2, about 16-fold higher for VEGF-A with respect to gremlin. Such nanomechanical differences affect the biological activity driven by the two angiogenic factors in endothelial cells, as evidenced by a more rapid VEGFR2 clustering and a more potent mitogenic response triggered by VEGF-A in respect to gremlin. Together, these data point to surface intermolecular interactions on cell membrane between activated receptors as a key modulator of the intracellular signaling cascade. Vascular endothelial growth factor receptor-2 (VEGFR2) is an endothelial cell receptor that plays a pivotal role in physiologic and pathologic angiogenesis and is a therapeutic target for angiogenesis-dependent diseases, including cancer. By leveraging on a dedicated nanomechanical biosensor, we investigated the nanoscale mechanical phenomena intertwined with VEGFR2 surface recognition by its prototypic ligand VEGF-A and its noncanonical ligand gremlin. We found that the two ligands bind the immobilized extracellular domain of VEGFR2 (sVEGFR2) with comparable binding affinity. Nevertheless, they interact with sVEGFR2 with different binding kinetics and drive different in-plane piconewton intermolecular forces, suggesting that the binding of VEGF-A or gremlin induces different conformational changes in sVEGFR2. These behaviors can be effectively described in terms of a different "nanomechanical affinity" of the two ligands for sVEGFR2, about 16-fold higher for VEGF-A with respect to gremlin. Such nanomechanical differences affect the biological activity driven by the two angiogenic factors in endothelial cells, as evidenced by a more rapid VEGFR2 clustering and a more potent mitogenic response triggered by VEGF-A in respect to gremlin. Together, these data point to surface intermolecular interactions on cell membrane between activated receptors as a key modulator of the intracellular signaling cascade.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/164865
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact