The mammalian target of rapamycin (mTOR) serine/threonine kinase is the catalytic subunit of two multi-protein complexes, referred to as mTORC1 and mTORC2. Signaling downstream of mTORC1 has a critical role in leukemic cell biology by controlling mRNA translation of genes involved in both cell survival and proliferation. mTORC1 activity can be downmodulated by upregulating the liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) pathway. Here, we have explored the therapeutic potential of the anti-diabetic drug, metformin (an LKB1/AMPK activator), against both T-cell acute lymphoblastic leukemia (T-ALL) cell lines and primary samples from T-ALL patients displaying mTORC1 activation. Metformin affected T-ALL cell viability by inducing autophagy and apoptosis. However, it was much less toxic against proliferating CD4þ T-lymphocytes from healthy donors. Western blot analysis demonstrated dephosphorylation of mTORC1 downstream targets. Unlike rapamycin, we found a marked inhibition of mRNA translation in T-ALL cells treated with metformin. Remarkably, metformin targeted the side population of T-ALL cell lines as well as a putative leukemia-initiating cell subpopulation (CD34þ/CD7/CD4) in patient samples. In conclusion, metformin displayed a remarkable anti-leukemic activity, which emphasizes future development of LKB1/AMPK activators as clinical candidates for therapy in T-ALL. Leukemia (2012) 26, 91–100; doi:10.1038/leu.2011.269; published online 4 October 2011
AMP-dependent kinase/mammalian target of rapamycin complex 1 signaling in T-cell acute lymphoblastic leukemia: therapeutic implications.
TABELLINI, Giovanna;
2012-01-01
Abstract
The mammalian target of rapamycin (mTOR) serine/threonine kinase is the catalytic subunit of two multi-protein complexes, referred to as mTORC1 and mTORC2. Signaling downstream of mTORC1 has a critical role in leukemic cell biology by controlling mRNA translation of genes involved in both cell survival and proliferation. mTORC1 activity can be downmodulated by upregulating the liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) pathway. Here, we have explored the therapeutic potential of the anti-diabetic drug, metformin (an LKB1/AMPK activator), against both T-cell acute lymphoblastic leukemia (T-ALL) cell lines and primary samples from T-ALL patients displaying mTORC1 activation. Metformin affected T-ALL cell viability by inducing autophagy and apoptosis. However, it was much less toxic against proliferating CD4þ T-lymphocytes from healthy donors. Western blot analysis demonstrated dephosphorylation of mTORC1 downstream targets. Unlike rapamycin, we found a marked inhibition of mRNA translation in T-ALL cells treated with metformin. Remarkably, metformin targeted the side population of T-ALL cell lines as well as a putative leukemia-initiating cell subpopulation (CD34þ/CD7/CD4) in patient samples. In conclusion, metformin displayed a remarkable anti-leukemic activity, which emphasizes future development of LKB1/AMPK activators as clinical candidates for therapy in T-ALL. Leukemia (2012) 26, 91–100; doi:10.1038/leu.2011.269; published online 4 October 2011File | Dimensione | Formato | |
---|---|---|---|
AMP leuk 2012.pdf
accesso aperto
Descrizione: articolo in rivista internazionale
Tipologia:
Full Text
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
668.48 kB
Formato
Adobe PDF
|
668.48 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.