Among the main vibration-to-electricity conversion systems, resonant harvesters suffer from a series of strong limits like their narrow frequency response and poor output power at small scale. Most of all, realistic vibration sources are variable in time and abundant at relatively low frequencies. Nonlinear vibration harvesters, on the other hand, are more attractive, thanks to their large bandwidth response and flexibility to convert kinetic energy of the natural frequency of the sources. In particular, bistable oscillators have been proven to show higher global performances when excited by random vibrations. In this paper, such an approach is investigated for piezoelectric beams by exerting an increasing axial compression. An advantage of this technique is the absence of magnetic forces to create bistable dynamics. A thin piezoelectric axially loaded beam is theoretically modelled and experimentally investigated under wideband random vibrations. In the buckled configuration, the device exhibits superior power generation over a large interval of resistive load, with gains up to more than a factor of ten compared to the unbuckled state. The numerical model and experimental results are in good qualitative agreement.

Piezoelectric buckled beams for random vibration energy harvesting

FERRARI, Marco;FERRARI, Vittorio
2012-01-01

Abstract

Among the main vibration-to-electricity conversion systems, resonant harvesters suffer from a series of strong limits like their narrow frequency response and poor output power at small scale. Most of all, realistic vibration sources are variable in time and abundant at relatively low frequencies. Nonlinear vibration harvesters, on the other hand, are more attractive, thanks to their large bandwidth response and flexibility to convert kinetic energy of the natural frequency of the sources. In particular, bistable oscillators have been proven to show higher global performances when excited by random vibrations. In this paper, such an approach is investigated for piezoelectric beams by exerting an increasing axial compression. An advantage of this technique is the absence of magnetic forces to create bistable dynamics. A thin piezoelectric axially loaded beam is theoretically modelled and experimentally investigated under wideband random vibrations. In the buckled configuration, the device exhibits superior power generation over a large interval of resistive load, with gains up to more than a factor of ten compared to the unbuckled state. The numerical model and experimental results are in good qualitative agreement.
File in questo prodotto:
File Dimensione Formato  
125809.pdf

gestori archivio

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/125809
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 329
  • ???jsp.display-item.citation.isi??? 298
social impact