The proliferative impulse of the growth plate cartilage and related structures and its effect on the dimensions of long bones are well documented. The modulation of shape, however, is less known, and in general, it is referred to the coupled resorption/apposition process of bone modelling. A morphometric study was carried out on rabbit tibiae comparing size increments and shape changes in relation to age. Utilizing measurements made using dried bones, radiography and computerized tomography, it was possible to perform a three-dimensional analysis of shape modulation occurring during a period of growth extending from 3 months to 1 year of age. The dynamics of the shape changes related to growth were studied with a fluorescent tetracycline labelling. This enabled correlation of shape modulation with the 3-D distribution of apposition and resorption. The current thinking behind the influences and mechanical forces affecting bone architecture was discussed in the light of these findings. Several factors play a role in the structural organization of the human and upper vertebrates' skeleton, whose shape is genetically determined in the complex process usually referred as 'modelling'. This does not conflict with the existing evidence of remodelling being influenced by mechanical stimuli, but the unsolved question remains how physical forces (strains) act on the biological substrate of cartilage and bone cells.

Growth and Shape Modelling of the Rabbit Tibia: Study of the Dynamics of Developing Skeleton.

PAZZAGLIA, Ugo;ZARATTINI, Guido;
2012-01-01

Abstract

The proliferative impulse of the growth plate cartilage and related structures and its effect on the dimensions of long bones are well documented. The modulation of shape, however, is less known, and in general, it is referred to the coupled resorption/apposition process of bone modelling. A morphometric study was carried out on rabbit tibiae comparing size increments and shape changes in relation to age. Utilizing measurements made using dried bones, radiography and computerized tomography, it was possible to perform a three-dimensional analysis of shape modulation occurring during a period of growth extending from 3 months to 1 year of age. The dynamics of the shape changes related to growth were studied with a fluorescent tetracycline labelling. This enabled correlation of shape modulation with the 3-D distribution of apposition and resorption. The current thinking behind the influences and mechanical forces affecting bone architecture was discussed in the light of these findings. Several factors play a role in the structural organization of the human and upper vertebrates' skeleton, whose shape is genetically determined in the complex process usually referred as 'modelling'. This does not conflict with the existing evidence of remodelling being influenced by mechanical stimuli, but the unsolved question remains how physical forces (strains) act on the biological substrate of cartilage and bone cells.
File in questo prodotto:
File Dimensione Formato  
growth and shape.pdf

gestori archivio

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 312.73 kB
Formato Adobe PDF
312.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/122915
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact