This research deals with the development of experimental methods for the fatigue life evaluation of wheels for industrial applications. To date, the studies about this topic are mainly related to the automotive industry, where the loads on wheels are lower and the conditions of usage more standardised than in the industrial sector. Hence, the need of improving the knowledge also in this sector. In fact, the continuous request of improving the vehicles performance from the point of view of working loads, variability of usage and life-time duration, could lead to situations where the current design validation methods are insufficient. The first part of this thesis presents the state of the art of the validation methods for industrial wheels, with particular reference to fatigue lab testing according to approved standards. The most critical aspects of these methods are highlighted, mostly regarding applications not included in any test standard, or cases where the high loads required do not allow fatigue tests to be completed with acceptable time and cost for the industrial practice. To overcome these critical issues, an alternative approach is proposed. It is based on improving the knowledge of the service load spectra through appropriate field tests, and on alternative methods for evaluating the fatigue properties of the material after the production process. The importance of these topics is confirmed by a case of failure analysis of a machine for container handling. In the second part of this thesis, the study focuses on the evaluation of the fatigue properties of a specific component, a rim for agricultural applications, for which, to date, no fatigue failure has ever happened, neither in field service nor in traditional lab testing. The method used consists in the fatigue testing of section specimens obtained from the component, designed to replicate the maximum stress in the critical points of the full-scale component in service conditions. The results allowed to obtain a fatigue curve for the component, which also considers some aspects related to the production process, such as the surface roughness and the work hardening due to local plastic deformation. However, the compressive residual stresses, which were present in the full-scale rim, were released during the production of the specimens and they seem not considered by this approach. Given their known influence on the fatigue life of structural components, they should be evaluated anyway, in the general analysis. For example, they could be measured on the finished component and added, as mean stresses, to the stress spectra acquired during field tests. The approach discussed was also applied to a different rim size, for which fatigue failures were already reached through standard testing. This further investigation showed the existence of a scale factor between the fatigue life results of the full-scale component and the ones of the rim section specimens. The further application of the same procedure to similar cases will allow to evaluate the variability of this scale factor and its possible use for other components. In conclusion, the methods investigated in this research can be used to improve the design against fatigue of wheels for industrial vehicles. That may lead to the development of more reliable and optimised products, with possible weight reduction at the same fatigue strength, and consequent energy saving, which is a fundamental aspect in modern industry. Moreover, further topics for new possible research emerged, regarding the influence of the production process on the fatigue strength of the components and the need of developing new lab test standards, for critical applications, starting from the analysis of field tests data in real service conditions. The themes discussed and the methods used, here applied to wheels for industrial vehicles, are of general interest in mechanical engineering and can be extended to other structural components.
La presente ricerca riguarda lo sviluppo di metodi sperimentali per la previsione di vita a fatica di ruote per applicazioni industriali. Ad oggi, gli studi su tale argomento riguardano soprattutto il settore automotive, dove i carichi sulle ruote sono più bassi e le condizioni di utilizzo più uniformi, rispetto al settore industriale. Da qui l’esigenza di sviluppare maggiori conoscenze anche in quest’ultimo settore. Infatti, la continua richiesta di miglioramento delle prestazioni dei veicoli dal punto di vista dei carichi di lavoro, della variabilità di utilizzo e della durata complessiva, potrebbe condurre a situazioni dove gli attuali strumenti di validazione risultino insufficienti. La prima parte della tesi presenta lo stato dell’arte dei metodi di validazione delle ruote industriali, con particolare riferimento alle prove di fatica eseguite in laboratorio secondo standard riconosciuti. Di queste sono evidenziate le principali criticità, relative soprattutto ad applicazioni non comprese in tali standard di prova, o a casi dove gli elevati carichi richiesti non consentono di completare le prove con tempi e costi accettabili per la pratica industriale. Per ovviare a tali criticità, è proposto un approccio basato sul miglioramento della conoscenza degli spettri di carico in esercizio tramite prove sul campo, e su metodi alternativi di caratterizzazione a fatica del materiale dopo il processo produttivo. L’importanza di questi temi è confermata dall’analisi di un caso di rottura in servizio di una macchina per movimentazione container. Nella seconda parte della tesi, lo studio si concentra sulla caratterizzazione del comportamento a fatica di un componente, un cerchione per applicazioni agricole, per il quale non esistono attualmente casi di rottura né sul campo né tramite prove a fatica tradizionali. Il metodo usato prevede l’esecuzione di prove a fatica su provini ricavati dal componente, studiati in modo da replicarne le condizioni di massima sollecitazione nei punti critici in condizioni di esercizio. Dai risultati si è ricavata una curva a fatica per il componente che considera anche alcuni aspetti determinati dal processo produttivo, come la rugosità superficiale e l’incrudimento dovuto a deformazione plastica localizzata. Non sembrano essere invece incluse le tensioni residue di compressione che, seppure presenti nel cerchione completo, sono state rilasciate durante la realizzazione dei provini. Data la loro riconosciuta influenza sulla vita a fatica dei componenti strutturali, esse dovrebbero comunque essere valutate nell’analisi complessiva, ad esempio misurandole sul componente finito ed aggiungendole, come tensioni medie, agli spettri di carico misurati nelle prove sul campo. Il metodo esposto è stato replicato su un cerchione differente, per il quale già esistevano dati di rottura a fatica, verificando l’esistenza di un fattore di scala tra i risultati di durata del componente rispetto a quelli dei singoli provini. L’applicazione dello stesso procedimento a casi simili consentirà di valutare la variabilità di tale fattore di scala e la sua estendibilità ad altri componenti. In conclusione, le procedure utilizzate in questa ricerca consentono un miglioramento nella progettazione a fatica di ruote per veicoli industriali. Questo può portare allo sviluppo di prodotti più affidabili ed ottimizzati, con riduzione di peso a pari resistenza, e conseguente risparmio energetico, aspetto fondamentale nello sviluppo industriale moderno. Dai risultati ottenuti, sono poi emersi ulteriori argomenti di ricerca, riguardanti l’influenza dei processi produttivi sulla resistenza del materiale e la necessità di definire nuovi standard di prova in laboratorio, per ruote di applicazioni critiche, a partire dall’analisi dei dati acquisiti in condizioni di esercizio.
Numerical and experimental study of the fatigue life of wheels for industrial vehicles / Mazzoni, Alberto. - (2025 Jan 07).
Numerical and experimental study of the fatigue life of wheels for industrial vehicles
MAZZONI, ALBERTO
2025-01-07
Abstract
This research deals with the development of experimental methods for the fatigue life evaluation of wheels for industrial applications. To date, the studies about this topic are mainly related to the automotive industry, where the loads on wheels are lower and the conditions of usage more standardised than in the industrial sector. Hence, the need of improving the knowledge also in this sector. In fact, the continuous request of improving the vehicles performance from the point of view of working loads, variability of usage and life-time duration, could lead to situations where the current design validation methods are insufficient. The first part of this thesis presents the state of the art of the validation methods for industrial wheels, with particular reference to fatigue lab testing according to approved standards. The most critical aspects of these methods are highlighted, mostly regarding applications not included in any test standard, or cases where the high loads required do not allow fatigue tests to be completed with acceptable time and cost for the industrial practice. To overcome these critical issues, an alternative approach is proposed. It is based on improving the knowledge of the service load spectra through appropriate field tests, and on alternative methods for evaluating the fatigue properties of the material after the production process. The importance of these topics is confirmed by a case of failure analysis of a machine for container handling. In the second part of this thesis, the study focuses on the evaluation of the fatigue properties of a specific component, a rim for agricultural applications, for which, to date, no fatigue failure has ever happened, neither in field service nor in traditional lab testing. The method used consists in the fatigue testing of section specimens obtained from the component, designed to replicate the maximum stress in the critical points of the full-scale component in service conditions. The results allowed to obtain a fatigue curve for the component, which also considers some aspects related to the production process, such as the surface roughness and the work hardening due to local plastic deformation. However, the compressive residual stresses, which were present in the full-scale rim, were released during the production of the specimens and they seem not considered by this approach. Given their known influence on the fatigue life of structural components, they should be evaluated anyway, in the general analysis. For example, they could be measured on the finished component and added, as mean stresses, to the stress spectra acquired during field tests. The approach discussed was also applied to a different rim size, for which fatigue failures were already reached through standard testing. This further investigation showed the existence of a scale factor between the fatigue life results of the full-scale component and the ones of the rim section specimens. The further application of the same procedure to similar cases will allow to evaluate the variability of this scale factor and its possible use for other components. In conclusion, the methods investigated in this research can be used to improve the design against fatigue of wheels for industrial vehicles. That may lead to the development of more reliable and optimised products, with possible weight reduction at the same fatigue strength, and consequent energy saving, which is a fundamental aspect in modern industry. Moreover, further topics for new possible research emerged, regarding the influence of the production process on the fatigue strength of the components and the need of developing new lab test standards, for critical applications, starting from the analysis of field tests data in real service conditions. The themes discussed and the methods used, here applied to wheels for industrial vehicles, are of general interest in mechanical engineering and can be extended to other structural components.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_Mazzoni.pdf
embargo fino al 07/01/2026
Descrizione: TESI
Tipologia:
Tesi di dottorato
Dimensione
17.09 MB
Formato
Adobe PDF
|
17.09 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.