This thesis deals with technological innovation in the agri-food sector, integrating cutting-edge sensory systems to improve food quality assessment, optimize agricultural production, and enhance environmental safety. The first project introduces a new analytical model for Paper-Based Electrical Gas Sensors (PEGS) aimed at detecting food deterioration. This model increases the sensitivity and selectivity of PEGS through optimized electrode geometry and incorporates Near Field Communication (NFC) for wireless data transmission. The economic feasibility and empirical validation of these sensors underscore their potential in reducing food waste and advancing smart food packaging technologies. The second project explores the use of Indium Arsenide (InAs) nanowires in environmental monitoring, focusing on their ability to detect pollutants such as NO₂ and relative humidity. A specially developed dual-channel measurement system assesses the properties of InAs nanowires as sensors, evaluating their noise and reliability. This study highlights the advantages of InAs nanowires, including increased sensitivity and structural stability, for real-time environmental monitoring. The third project develops an autonomous system based on LoRaWAN for monitoring the Root Zone Temperature (RZT) in hydroponic basil cultivation. This system overcomes the limitations of traditional monitoring by using LoRaWAN technology for efficient long-distance data transmission and cloud integration for real-time data analysis, leading to improved agricultural practices and an increase in basil yield. Together, these projects demonstrate the transformative impact of sensory systems, nanotechnology, and wireless communication in enhancing agri-food technologies. They contribute to a sustainable and efficient future for food production and distribution, driven by technological innovation.
Questa tesi si occupa di innovazione tecnologica nel settore agroalimentare, integrando sistemi sensoriali all’avanguardia per migliorare la valutazione della qualità degli alimenti, ottimizzare la produzione agricola e potenziare la sicurezza ambientale. Il primo progetto introduce un nuovo modello analitico per i Paper-Based Electrical Gas Sensors (PEGS) mirato al rilevamento del deterioramento degli alimenti. Questo modello aumenta la sensibilità e la selettività dei PEGS attraverso una geometria degli elettrodi ottimizzata e incorpora la Near Field Communication (NFC) per la trasmissione dati senza fili. La fattibilità economica e la validazione empirica di questi sensori sottolineano il loro potenziale nella riduzione degli sprechi alimentari e nel progresso delle tecnologie di imballaggio intelligente degli alimenti. Il secondo progetto esplora l'uso di nanofili di Arseniuro di Indio (InAs) nel monitoraggio ambientale, concentrandosi sulla loro capacità di rilevare inquinanti come NO₂ e l'umidità relativa. Un sistema di misurazione a due canali sviluppati appositamente valuta le proprietà dei nanofili di InAs, come sensori , valutandone rumore e affidabilità. Questo studio evidenzia i vantaggi dei nanofili di InAs, inclusa un'aumentata sensibilità e stabilità strutturale, per il monitoraggio ambientale in tempo reale. Il terzo progetto sviluppa un sistema autonomo basato su LoRaWAN per il monitoraggio della Root Zone Temperature (RZT) nella coltivazione idroponica del basilico. Questo sistema supera i limiti del monitoraggio tradizionale utilizzando la tecnologia LoRaWAN per una trasmissione dati a lunga distanza efficiente e l'integrazione cloud per l'analisi dei dati in tempo reale, portando a pratiche agricole migliorate e un aumento della resa del basilico. Insieme, questi progetti dimostrano l'impatto trasformativo dei sistemi sensoriali, della nanotecnologia e della comunicazione wireless nel potenziare le tecnologie agroalimentari. Essi contribuiscono a un futuro sostenibile ed efficiente per la produzione e la distribuzione alimentare, guidato dall'innovazione tecnologica.
Sensing Strategies of Agri-Food: Advanced Instrumentation for Quality Assurance, Agricultural Enhancement, and Environmental Safety / Musaev, Egit. - (2024 Jun 03).
Sensing Strategies of Agri-Food: Advanced Instrumentation for Quality Assurance, Agricultural Enhancement, and Environmental Safety
MUSAEV, EGIT
2024-06-03
Abstract
This thesis deals with technological innovation in the agri-food sector, integrating cutting-edge sensory systems to improve food quality assessment, optimize agricultural production, and enhance environmental safety. The first project introduces a new analytical model for Paper-Based Electrical Gas Sensors (PEGS) aimed at detecting food deterioration. This model increases the sensitivity and selectivity of PEGS through optimized electrode geometry and incorporates Near Field Communication (NFC) for wireless data transmission. The economic feasibility and empirical validation of these sensors underscore their potential in reducing food waste and advancing smart food packaging technologies. The second project explores the use of Indium Arsenide (InAs) nanowires in environmental monitoring, focusing on their ability to detect pollutants such as NO₂ and relative humidity. A specially developed dual-channel measurement system assesses the properties of InAs nanowires as sensors, evaluating their noise and reliability. This study highlights the advantages of InAs nanowires, including increased sensitivity and structural stability, for real-time environmental monitoring. The third project develops an autonomous system based on LoRaWAN for monitoring the Root Zone Temperature (RZT) in hydroponic basil cultivation. This system overcomes the limitations of traditional monitoring by using LoRaWAN technology for efficient long-distance data transmission and cloud integration for real-time data analysis, leading to improved agricultural practices and an increase in basil yield. Together, these projects demonstrate the transformative impact of sensory systems, nanotechnology, and wireless communication in enhancing agri-food technologies. They contribute to a sustainable and efficient future for food production and distribution, driven by technological innovation.File | Dimensione | Formato | |
---|---|---|---|
THESIS.pdf
Open Access dal 04/12/2024
Descrizione: TESI
Tipologia:
Tesi di dottorato
Dimensione
18.57 MB
Formato
Adobe PDF
|
18.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.