This paper aims to present a method to increase interpretability human analysts can have in actionable intelligence from analysing Wi-Fi signals used as passive radar systems for situational understanding. The Passive Radar Interpretability using Variational Auto Encoders (PRIVAtE) method is demonstrated using a recent dataset that estimates the latent distributions of antennas of the same Wi-Fi receiver to perform human activity recognition. The performance theoretical analysis of machine learning binary classification includes error probabilities using a statistical test based on a classification learned in the training phase. Results demonstrate that the compressed data obtained using the Variational Auto-Encoder is statistically very informative for providing situational understanding.

PRIVAtE: Passive Radar Interpretability using Variational Auto Encoders

Cominelli M.;Gringoli F.;Cerutti F.
2023-01-01

Abstract

This paper aims to present a method to increase interpretability human analysts can have in actionable intelligence from analysing Wi-Fi signals used as passive radar systems for situational understanding. The Passive Radar Interpretability using Variational Auto Encoders (PRIVAtE) method is demonstrated using a recent dataset that estimates the latent distributions of antennas of the same Wi-Fi receiver to perform human activity recognition. The performance theoretical analysis of machine learning binary classification includes error probabilities using a statistical test based on a classification learned in the training phase. Results demonstrate that the compressed data obtained using the Variational Auto-Encoder is statistically very informative for providing situational understanding.
File in questo prodotto:
File Dimensione Formato  
PRIVAtE_Passive_Radar_Interpretability_using_Variational_Auto_Encoders.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.19 MB
Formato Adobe PDF
2.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/597447
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact