The growing interest in the 3D printing of concrete (3DPC) is associated with design capabilities aimed at creating efficient and sustainable buildings. This technology provides design freedom, allowing the production of complex and variable geometries. In fact, the concrete material can maintain its shape without the use of formwork due to its rheological properties. Furthermore, material use can be reduced by structural optimisation, a mathematical method through which material is used only where it is structurally necessary. Several digital fabrication approaches exist, but in this thesis the extrusion process is considered, which consists of layer-by-layer deposition of a filament of fresh concrete. While traditional cast concrete is an isotropic material, the 3D printed material, due to its layered structure, is characterised by anisotropic mechanical properties. Consequently, the standards and methodologies of cast concrete are not always applicable to the 3DPC material. The hardened properties of the printed material are often influenced by the direction of load application with respect to the printed layers, an aspect investigated in this thesis with compression and flexural tests. The influence on compressive strength is minimal, while the impact on flexural strength is more significant. Particular attention is given to the interlayer strength, which is studied with a direct tensile test when normal forces act on the interface and with a push-out test or slant shear test in the case of interfaces subjected to shear action. The push-out test, commonly used for masonry structures, is suitable to represent a biaxial state of stress typical of a wall subjected to both a transverse shear force and a vertical compressive load. The slant shear test, commonly used to study the interface strength between the concrete and a repair material, represents the case of the interface subjected to a combined state of shear and compression, and it allows to study the mechanical properties varying the layers inclination with respect to the horizontal plane. The specimens tested with the slant shear test had a cold joint to study its influence on the mechanical properties. These tests enable the measurement of the cohesion and the angle of internal friction and provide a methodology to determine the resistance domain of 3DPC elements. On a large scale, in the literature only a few studies have been devoted to the study of the structural behaviour of 3DPC elements. To this end, five 3DPC walls were carried out at the University of Brescia. Four walls were unreinforced, and one was reinforced with vertical steel bars grouted in outer small pockets. The walls were subjected to a top cyclic displacement of increasing amplitude and to a constant vertical load that simulates the load acting on a wall of a typical two-story building. The walls showed high initial stiffness, high strength to horizontal loads, and brittle behaviour with flexural failure when the tensile strength of the material was reached. After cracking, a rocking mechanism followed. In addition, the possibility of enhancing the thermal insulation of the panels is discussed by proposing an analytical and finite element method, which are afterwards validated by testing a specimen to evaluate the thermal conductivity of the element. In addition, a numerical method is developed to predict the interface behaviour and structural performance of 3D printed concrete walls. The push-out tests are modelled with smeared cracking and discrete cracking approaches. The 3DPC walls are modelled using a smeared cracking approach with interface elements at the base that simulate the crack opening. The finite element analysis results, both for the push-out and the 3DPC walls, are in good agreement with the experimental findings. Finally, the integration of structural and thermal design using 3DPC technology is discussed with regards to a two-story reference building.
Il crescente interesse per la stampa 3D del calcestruzzo è associato alle capacità di progettare edifici efficienti e sostenibili. Questa tecnologia offre grande libertà di progettazione con geometrie complesse e variabili. Infatti, il calcestruzzo stampato, grazie alle sue proprietà reologiche, mantiene la sua forma senza utilizzare casseforme. Inoltre, l'uso del materiale può essere ridotto grazie all'ottimizzazione topologica, che consente di utilizzare il materiale solo dove è necessario dal punto di vista strutturale. Esistono diversi approcci nell’ambito della fabbricazione digitale, in questa tesi si considera il processo di estrusione, che consiste nella deposizione, strato per strato, di un filamento di calcestruzzo fresco. Mentre il calcestruzzo tradizionale è un materiale isotropo, il materiale stampato in 3D, a causa della struttura a strati, è anisotropo. Di conseguenza, le norme e le metodologie del calcestruzzo tradizionale non sono sempre utilizzabili. Le proprietà del materiale stampato allo stato indurito sono spesso influenzate dalla direzione di applicazione del carico rispetto agli strati stampati, aspetto studiato in questa tesi con prove di compressione e flessione. L'influenza sulla resistenza a compressione è risultata minima, mentre è abbastanza significativa sulla resistenza a flessione. Particolare attenzione viene data alla resistenza tra gli strati stampati, studiata con prove di trazione diretta quando l’interfaccia è soggetta a forze normali e con prove di push-out o slant shear test quando soggetta ad azioni di taglio. La prova di push-out, comunemente utilizzata per le murature, ben rappresenta lo stato di sollecitazione di una parete sottoposta a una forza orizzontale e a un carico di compressione verticale. Lo slant shear test, comunemente utilizzato per studiare la resistenza dell'interfaccia tra il calcestruzzo e un materiale di rinforzo, rappresenta il caso dell'interfaccia sottoposta a taglio e compressione consentendo di studiare le proprietà meccaniche al variare dell’inclinazione degli strati rispetto al piano di stampa orizzontale. Questi test forniscono una metodologia per determinare il dominio di resistenza degli elementi stampati. Ci sono pochi studi in letteratura riguardo il comportamento strutturale di elementi stampati 3D. A tal fine, cinque pareti stampate 3D sono state testate presso l'Università di Brescia. Quattro pareti sono prive di armatura, mentre una è armata con barre di acciaio verticali inserite in tasche laterali. Le pareti sono state sottoposte a uno spostamento ciclico orizzontale di ampiezza crescente e a un carico verticale costante che rappresenta il carico agente su una parete di un tipico edificio a due piani. Il comportamento è caratterizzato da elevate rigidezza iniziale e resistenza ai carichi orizzontali; la rottura è fragile per flessione al raggiungimento della resistenza a trazione del materiale. Dopo la fessurazione si instaura un meccanismo di rocking. Inoltre, il comportamento termico di pareti stampate 3D è studiato proponendo un metodo analitico e un metodo agli elementi finiti, che sono stati successivamente validati con una prova termica su un provino stampato 3D per valutare la conducibilità termica dell'elemento. Un metodo numerico è stato, inoltre, sviluppato per studiare il comportamento delle interfacce tra gli strati e le prestazioni strutturali delle pareti in calcestruzzo stampate 3D. Le prove di push-out sono state modellate utilizzando un approccio a fessurazione distribuita e uno a fessurazione concentrata, quest’ultimo utilizzato anche per la modellazione di pareti stampate 3D. I risultati numerici sia per i push-out test che per le pareti rispecchiano bene i risultati sperimentali. Infine, viene discussa l'integrazione della progettazione strutturale e termica utilizzando la tecnologia della stampa 3D per estrusione, con riferimento a un edificio a due piani.
Study on the structural behaviour of 3D printed concrete elements made by extrusion process / Licciardello, Lucia. - (2024 Mar 08).
Study on the structural behaviour of 3D printed concrete elements made by extrusion process.
Licciardello, Lucia
2024-03-08
Abstract
The growing interest in the 3D printing of concrete (3DPC) is associated with design capabilities aimed at creating efficient and sustainable buildings. This technology provides design freedom, allowing the production of complex and variable geometries. In fact, the concrete material can maintain its shape without the use of formwork due to its rheological properties. Furthermore, material use can be reduced by structural optimisation, a mathematical method through which material is used only where it is structurally necessary. Several digital fabrication approaches exist, but in this thesis the extrusion process is considered, which consists of layer-by-layer deposition of a filament of fresh concrete. While traditional cast concrete is an isotropic material, the 3D printed material, due to its layered structure, is characterised by anisotropic mechanical properties. Consequently, the standards and methodologies of cast concrete are not always applicable to the 3DPC material. The hardened properties of the printed material are often influenced by the direction of load application with respect to the printed layers, an aspect investigated in this thesis with compression and flexural tests. The influence on compressive strength is minimal, while the impact on flexural strength is more significant. Particular attention is given to the interlayer strength, which is studied with a direct tensile test when normal forces act on the interface and with a push-out test or slant shear test in the case of interfaces subjected to shear action. The push-out test, commonly used for masonry structures, is suitable to represent a biaxial state of stress typical of a wall subjected to both a transverse shear force and a vertical compressive load. The slant shear test, commonly used to study the interface strength between the concrete and a repair material, represents the case of the interface subjected to a combined state of shear and compression, and it allows to study the mechanical properties varying the layers inclination with respect to the horizontal plane. The specimens tested with the slant shear test had a cold joint to study its influence on the mechanical properties. These tests enable the measurement of the cohesion and the angle of internal friction and provide a methodology to determine the resistance domain of 3DPC elements. On a large scale, in the literature only a few studies have been devoted to the study of the structural behaviour of 3DPC elements. To this end, five 3DPC walls were carried out at the University of Brescia. Four walls were unreinforced, and one was reinforced with vertical steel bars grouted in outer small pockets. The walls were subjected to a top cyclic displacement of increasing amplitude and to a constant vertical load that simulates the load acting on a wall of a typical two-story building. The walls showed high initial stiffness, high strength to horizontal loads, and brittle behaviour with flexural failure when the tensile strength of the material was reached. After cracking, a rocking mechanism followed. In addition, the possibility of enhancing the thermal insulation of the panels is discussed by proposing an analytical and finite element method, which are afterwards validated by testing a specimen to evaluate the thermal conductivity of the element. In addition, a numerical method is developed to predict the interface behaviour and structural performance of 3D printed concrete walls. The push-out tests are modelled with smeared cracking and discrete cracking approaches. The 3DPC walls are modelled using a smeared cracking approach with interface elements at the base that simulate the crack opening. The finite element analysis results, both for the push-out and the 3DPC walls, are in good agreement with the experimental findings. Finally, the integration of structural and thermal design using 3DPC technology is discussed with regards to a two-story reference building.File | Dimensione | Formato | |
---|---|---|---|
TESI Licciardello corretta.pdf
embargo fino al 08/03/2025
Descrizione: Tesi
Tipologia:
Tesi di dottorato
Dimensione
16.03 MB
Formato
Adobe PDF
|
16.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.