The escalation of industrialization and urbanization has led to a significant upsurge in solid hazardous waste production, posing intricate and costly challenges for governments, industries, and communities. These hazardous wastes, including industrial byproducts, chemicals, and materials, present grave risks to the environment and public health due to their potential for contaminating soil and groundwater. Contaminated soils are a growing environmental concern, categorized as waste due to the peril they pose. This necessitates stringent management and remediation measures to mitigate their detrimental effects. Governments and international bodies have established stringent regulations for proper waste management and soil remediation, reflecting the global shift toward resource conservation and sustainability. Thermal treatment technologies, capable of converting waste into energy or secondary raw materials, play a pivotal role in this endeavour. Advances in these technologies have made it possible to process hazardous waste and contaminated soils efficiently and safely. However, challenges like emissions control and residue management must be addressed. The efficiency of thermal treatment processes relies on a complex interplay of operating conditions and control parameters, underscoring the importance of understanding their impact on waste management and environmental remediation. In the scope of this study, efficiency in thermal treatment processes is explored through operational parameter optimization, including heating time and temperature. Experiments involving one inorganic waste type and two organic waste types were conducted to mitigate reactivity of inorganic hazardous waste and reduce concentration of persistent organic pollutants, such as polychlorinated biphenyls and banned pesticides, in contaminated soil samples.
L'escalation dell'industrializzazione e dell'urbanizzazione ha portato a un significativo aumento della produzione di rifiuti pericolosi solidi, presentando sfide intricate e costose per governi, industrie e comunità. Questi rifiuti pericolosi, compresi sottoprodotti industriali, sostanze chimiche e materiali, rappresentano gravi rischi per l'ambiente e la salute pubblica a causa della loro potenziale contaminazione del suolo e delle acque sotterranee. I suoli contaminati sono una crescente preoccupazione ambientale, categorizzati come rifiuti a causa del pericolo che rappresentano. Ciò richiede rigorose misure di gestione e rimedio per mitigare i loro effetti dannosi. Governi e organismi internazionali hanno stabilito rigorose normative per la corretta gestione dei rifiuti e la bonifica del suolo, riflettendo il cambiamento globale verso la conservazione delle risorse e la sostenibilità. Le tecnologie di trattamento termico, capaci di convertire i rifiuti in energia o materie prime secondarie, svolgono un ruolo centrale in questo sforzo. Gli avanzamenti in queste tecnologie hanno reso possibile trattare in modo efficiente e sicuro i rifiuti pericolosi e i suoli contaminati. Tuttavia, è necessario affrontare sfide come il controllo delle emissioni e la gestione dei residui. L'efficienza dei processi di trattamento termico si basa su una complessa interazione di condizioni operative e parametri di controllo, sottolineando l'importanza della comprensione del loro impatto sulla gestione dei rifiuti e sulla bonifica ambientale. Nell'ambito di questo studio, l'efficienza nei processi di trattamento termico è esplorata attraverso l'ottimizzazione dei parametri operativi, compresi il tempo e la temperatura di riscaldamento. Sono stati condotti esperimenti che coinvolgono un tipo di rifiuto inorganico e due tipi di rifiuti organici per mitigare la reattività dei rifiuti pericolosi inorganici e ridurre la concentrazione di inquinanti organici persistenti, come policlorobifenili e pesticidi vietati, nei campioni di suolo contaminato.
Optimizing the Thermal Treatment for Sustainable Hazardous Waste Management and Soil Remediation / BIABANI RESHTEHROUDI, Roya. - (2024 Mar 07).
Optimizing the Thermal Treatment for Sustainable Hazardous Waste Management and Soil Remediation
BIABANI RESHTEHROUDI, ROYA
2024-03-07
Abstract
The escalation of industrialization and urbanization has led to a significant upsurge in solid hazardous waste production, posing intricate and costly challenges for governments, industries, and communities. These hazardous wastes, including industrial byproducts, chemicals, and materials, present grave risks to the environment and public health due to their potential for contaminating soil and groundwater. Contaminated soils are a growing environmental concern, categorized as waste due to the peril they pose. This necessitates stringent management and remediation measures to mitigate their detrimental effects. Governments and international bodies have established stringent regulations for proper waste management and soil remediation, reflecting the global shift toward resource conservation and sustainability. Thermal treatment technologies, capable of converting waste into energy or secondary raw materials, play a pivotal role in this endeavour. Advances in these technologies have made it possible to process hazardous waste and contaminated soils efficiently and safely. However, challenges like emissions control and residue management must be addressed. The efficiency of thermal treatment processes relies on a complex interplay of operating conditions and control parameters, underscoring the importance of understanding their impact on waste management and environmental remediation. In the scope of this study, efficiency in thermal treatment processes is explored through operational parameter optimization, including heating time and temperature. Experiments involving one inorganic waste type and two organic waste types were conducted to mitigate reactivity of inorganic hazardous waste and reduce concentration of persistent organic pollutants, such as polychlorinated biphenyls and banned pesticides, in contaminated soil samples.File | Dimensione | Formato | |
---|---|---|---|
PhD tesi Biabani Corretto.pdf
accesso aperto
Descrizione: Tesi
Tipologia:
Tesi di dottorato
Dimensione
5.49 MB
Formato
Adobe PDF
|
5.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.