In the field of biotechnology, considerable efforts are being devoted to research and technological advancement, with a focus on improving protocols to produce large-scale tissue engineering products, suitable for obtaining scalable and safe products with standardized and automated cell culture devices. Furthermore, the application of biophysical stimulation that mimics physiological processes to these engineered products, promotes the acceleration of various bioprocesses. Finally, the creation of models in vitro requires continuous monitoring and readjustment of the ongoing biological process, with a view to obtaining an automated device capable of producing large-scale engineered products. And this requires the use of techniques for real-time, non-destructive monitoring of cell culture and its various parameters to achieve the desired final construct. The high cost and the long time required to obtain engineered, optimized, and functional constructs are still major limitations in the advancement of regenerative medicine, in addition to all the limitations related to frontier research, in which tissue engineering is located. The following thesis aims, through the use of low cost and non invasive techniques, to interact with cell cultures and enable real-time feedback, allowing for an improvement of traditional techniques, and taking advantage of technological advances in engineering to promote cell growth and differentiation. This thesis will present two main applications that aim to improve existing methodologies in laboratories, specifically, the development of technological approaches for the realization and application of biophysical stimulation for physiological processes improvement and optimization and device fabrication, exploiting rapid prototyping techniques for real-time monitoring. In detail, tissue engineering will be introduced and explored in the thesis, with a specific focus on the current state of the art related to biophysical stimulation and real-time monitoring of cell culture in vitro and a brief introduction to neurophysiology with a discussion of neuronal physiology and electrophysiological methods of action potential recording with real-time monitoring approach. Next, the development of a system for electrical stimulation using an electric field to accelerate the differentiation and maturation of dopaminergic neurons derived from hiPSC is presented in the first application. The following work led to relevant results with regard to the efficacy of the electrical stimulation device, which was found to be functional and in line with good laboratory practice. While the electrical stimulation protocol had significant effects on cell differentiation from a morphological point of view, achieving statistically significant results. Following the relevant results obtained in the work on electrical stimulation, the realization of a device capable of promoting both electrical stimulation and real-time monitoring of the differentiation process by recording action potentials generated by mature neurons will be proposed to overcome some limitations brought to light in the application. Specifically, the fabrication of a printed microelectrode array using additive manufacturing printing techniques is described. Specifically, the design was developed in an initial phase in which computational modelling techniques were used to define the parameters and requirements necessary for the device realization (e.g., electrode size and electrode spacing). Following the design, the device was fabricated with a multilayer structure by the Aerosol Jet Printer, and finally, the device was geometrical and electrical characterized to ensure that the imposed design requirements were met and to evaluate the device's long-term stability. In addition, the electrode array was also tested in terms of sterilization and biocompatibility, obtaining good results in terms of viability and adhesion of cells to the printed substrate.
Nell’ambito delle biotecnologie, notevoli sforzi vengono dedicati all’avanzamento della ricerca e della tecnologia, con particolare attenzione al miglioramento dei protocolli per la produzione di prodotti di ingegneria tissutale su larga scala. Lo sviluppo di metodi innovativi che rientrano nel campo della medicina rigenerativa, vedono nello studio di modelli in vitro e nella sperimentazione di farmaci, un’enorme possibilità applicativa e di avanzamento. Inoltre, è necessario un continuo monitoraggio e riadattamento del processo biologico in corso, nell’ottica di ottenere un dispositivo automatizzato in grado di realizzare prodotti su larga scala. L’elevato costo e i lunghi tempi richiesti per ottenere costrutti ingegnerizzati, ottimizzati e funzionali, sono ancora un grande limite. In quest’ottica, la seguente tesi si pone l’obbiettivo, tramite l’utilizzo di tecniche economiche e non invasive, di interagire con le colture cellulari e consentire un feedback in tempo reale, consentendo un miglioramento delle odierne tecniche, sfruttando i progressi tecnologici dell’ingegneria per promuovere la crescita e il differenziamento cellulare. La tesi presenterà due applicazioni principali che hanno come obiettivo il miglioramento delle metodologie esistenti, in particolare, lo sviluppo di approcci tecnologici per la realizzazione e l’applicazione di stimoli biofisici per il miglioramento e l’ottimizzazione dei processi fisiologici e la realizzazione di dispositivi, sfruttando le tecniche di prototipazione rapida per il monitoraggio in tempo reale delle colture cellulari. In dettaglio, nella tesi verrà introdotto e approfondito il tema dell’ingegneria tissutale, con un focus specifico sull’attuale stato dell’arte relativo alla stimolazione biofisica e al monitoraggio in tempo reale della coltura cellulare in vitro, oltre ad una breve introduzione sulla neurofisiologia con una breve trattazione sulla fisiologia neuronale e sui metodi elettrofisiologici di registrazione del potenziale d’azione che riguarderà l’approccio del monitoraggio in tempo reale. Nel primo lavoro viene presentato lo sviluppo di un sistema per la stimolazione elettrica tramite l’utilizzo di un campo elettrico per accelerare il differenziamento e la maturazione dei neuroni dopaminergici derivati da cellule staminali pluripotenti indotte umane. Il seguente lavoro ha portato ad ottimi risultati per quanto riguarda l’efficacia del dispositivo di stimolazione elettrica che è risultato funzionale e in linea con le buone norme di laboratorio. Mentre il protocollo di stimolazione elettrica ha avuto notevoli effetti sul differenziamento cellulare, ottenendo risultati statisticamente significativi. A seguito dei rilevanti risultati ottenuti nel lavoro sulla stimolazione elettrica, verrà proposta la realizzazione di un dispositivo in grado di promuovere sia la stimolazione elettrica sia il monitoraggio in tempo reale del processo di differenziamento, tramite la registrazione di potenziali d’azione generati da neuroni maturi. Nello specifico, viene descritta la realizzazione di un array di microelettrodi stampati, utilizzando tecniche di stampa di additive manufacturing. In particolare, la progettazione si è sviluppata in una prima fase in cui tecniche di modellazione computazionali sono state utilizzate in modo da definire i parametri e i requisiti necessari alla realizzazione del disposito. In seguito, il dispositivo è stato realizzato con una struttura multilayer tramite l’utilizzo dell’Aerosol Jet Printer e infine, il dispositivo è stato caratterizzato dal punto di vista geometrico ed elettrico. Inoltre, l’array di elettrodi è stato testato anche in termini di sterilizzazione e biocompatibilità, ottenendo buoni risultati in termine di vitalità e adesione delle cellule al substrato.
Electrical stimulation and realtime monitoring for cell culture / Armando, Ileana. - (2024 Feb 16).
Electrical stimulation and realtime monitoring for cell culture
ARMANDO, ILEANA
2024-02-16
Abstract
In the field of biotechnology, considerable efforts are being devoted to research and technological advancement, with a focus on improving protocols to produce large-scale tissue engineering products, suitable for obtaining scalable and safe products with standardized and automated cell culture devices. Furthermore, the application of biophysical stimulation that mimics physiological processes to these engineered products, promotes the acceleration of various bioprocesses. Finally, the creation of models in vitro requires continuous monitoring and readjustment of the ongoing biological process, with a view to obtaining an automated device capable of producing large-scale engineered products. And this requires the use of techniques for real-time, non-destructive monitoring of cell culture and its various parameters to achieve the desired final construct. The high cost and the long time required to obtain engineered, optimized, and functional constructs are still major limitations in the advancement of regenerative medicine, in addition to all the limitations related to frontier research, in which tissue engineering is located. The following thesis aims, through the use of low cost and non invasive techniques, to interact with cell cultures and enable real-time feedback, allowing for an improvement of traditional techniques, and taking advantage of technological advances in engineering to promote cell growth and differentiation. This thesis will present two main applications that aim to improve existing methodologies in laboratories, specifically, the development of technological approaches for the realization and application of biophysical stimulation for physiological processes improvement and optimization and device fabrication, exploiting rapid prototyping techniques for real-time monitoring. In detail, tissue engineering will be introduced and explored in the thesis, with a specific focus on the current state of the art related to biophysical stimulation and real-time monitoring of cell culture in vitro and a brief introduction to neurophysiology with a discussion of neuronal physiology and electrophysiological methods of action potential recording with real-time monitoring approach. Next, the development of a system for electrical stimulation using an electric field to accelerate the differentiation and maturation of dopaminergic neurons derived from hiPSC is presented in the first application. The following work led to relevant results with regard to the efficacy of the electrical stimulation device, which was found to be functional and in line with good laboratory practice. While the electrical stimulation protocol had significant effects on cell differentiation from a morphological point of view, achieving statistically significant results. Following the relevant results obtained in the work on electrical stimulation, the realization of a device capable of promoting both electrical stimulation and real-time monitoring of the differentiation process by recording action potentials generated by mature neurons will be proposed to overcome some limitations brought to light in the application. Specifically, the fabrication of a printed microelectrode array using additive manufacturing printing techniques is described. Specifically, the design was developed in an initial phase in which computational modelling techniques were used to define the parameters and requirements necessary for the device realization (e.g., electrode size and electrode spacing). Following the design, the device was fabricated with a multilayer structure by the Aerosol Jet Printer, and finally, the device was geometrical and electrical characterized to ensure that the imposed design requirements were met and to evaluate the device's long-term stability. In addition, the electrode array was also tested in terms of sterilization and biocompatibility, obtaining good results in terms of viability and adhesion of cells to the printed substrate.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis Armando Corretto.pdf
embargo fino al 16/02/2025
Descrizione: Tesi
Tipologia:
Tesi di dottorato
Dimensione
14.41 MB
Formato
Adobe PDF
|
14.41 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.